IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v7y2006i3p137-173.html
   My bibliography  Save this article

Assessment of emissions scenarios revisited

Author

Listed:
  • Nebojsa Nakicenovic
  • Peter Kolp
  • Keywan Riahi
  • Mikiko Kainuma
  • Tatsuya Hanaoka

Abstract

This article assesses emissions scenarios in the literature, originally documented in the scenario database that was developed more than 7 years ago. The original scenario assessment and literature review has been used, among other things, as the basis for the quantification of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) reference scenarios and the IPCC Third Assessment Report (TAR) stabilization scenarios. In the meantime, a large number of new emissions scenarios have been developed and published. We have collected the relevant information about these new scenarios with the objective to assess the more recent perspectives about future global emissions and to assess the changes in the perspectives about future emissions and their driving forces that may have occurred since the publication of SRES and TAR scenarios. Our analysis goes beyond mere comparisons of emissions ranges. In particular, we explore the underlying drivers of emissions using the so-called IPAT identity (Impacts are proportional to the product of Population, Affluence, and Technology). When IPAT analysis refers to carbon emissions it is called the Kaya identity, where carbon dioxide (CO 2 ) emissions are assumed to correspond to the product of population, per capita income, energy intensity of gross domestic product (GDP), and CO 2 intensity of energy. Comparing the recent scenario literature with the scenarios developed before TAR shows that there are strong similarities for the main underlying tendencies in many of the scenario’s driving forces and results. Copyright Springer Japan 2006

Suggested Citation

  • Nebojsa Nakicenovic & Peter Kolp & Keywan Riahi & Mikiko Kainuma & Tatsuya Hanaoka, 2006. "Assessment of emissions scenarios revisited," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 137-173, September.
  • Handle: RePEc:spr:envpol:v:7:y:2006:i:3:p:137-173
    DOI: 10.1007/BF03353998
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF03353998
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF03353998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ottmar Edenhofer, Kai Lessmann, Claudia Kemfert, Michael Grubb and Jonathan Kohler, 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 57-108.
    2. Wolfgang Lutz & Warren Sanderson & Sergei Scherbov, 2001. "The end of world population growth," Nature, Nature, vol. 412(6846), pages 543-545, August.
    3. Claudia Kemfert, Truong P. Truong, and Thomas Bruckner, 2006. "Economic Impact Assessment of Climate Change - A Multi-gas Investigation with WIAGEM-GTAPEL-ICM," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 441-460.
    4. Ferdinand A. Gul & Judy S. L. Tsui, 2004. "Introduction and overview," Palgrave Macmillan Books, in: The Governance of East Asian Corporations, chapter 1, pages 1-26, Palgrave Macmillan.
    5. van Vuuren, Detlef P. & Weyant, John & de la Chesnaye, Francisco, 2006. "Multi-gas scenarios to stabilize radiative forcing," Energy Economics, Elsevier, vol. 28(1), pages 102-120, January.
    6. Weyant, John P., 2004. "Introduction and overview," Energy Economics, Elsevier, vol. 26(4), pages 501-515, July.
    7. Kurosawa, Atsushi, 2004. "Carbon concentration target and technological choice," Energy Economics, Elsevier, vol. 26(4), pages 675-684, July.
    8. John Reilly, Marcus Sarofim, Sergey Paltsev and Ronald Prinn, 2006. "The Role of Non-CO2 GHGs in Climate Policy: Analysis Using the MIT IGSM," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 503-520.
    9. John P. Weyant, 1993. "Costs of Reducing Global Carbon Emissions," Journal of Economic Perspectives, American Economic Association, vol. 7(4), pages 27-46, Fall.
    10. Alan Manne & Richard Richels, 1995. "The Greenhouse Debate: Econonmic Efficiency, Burden Sharing and Hedging Strategies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-38.
    11. Peck, Stephen C & Teisberg, Thomas J, 1995. "International CO2 emissions control : An analysis using CETA," Energy Policy, Elsevier, vol. 23(4-5), pages 297-308.
    12. Wolfgang Lutz & Warren Sanderson & Sergei Scherbov, 1997. "Doubling of world population unlikely," Nature, Nature, vol. 387(6635), pages 803-805, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    2. Detlef Vuuren & Elke Stehfest, 2013. "If climate action becomes urgent: the importance of response times for various climate strategies," Climatic Change, Springer, vol. 121(3), pages 473-486, December.
    3. van Vuuren, Detlef P. & Stehfest, Elke & den Elzen, Michel G.J. & van Vliet, Jasper & Isaac, Morna, 2010. "Exploring IMAGE model scenarios that keep greenhouse gas radiative forcing below 3 W/m2 in 2100," Energy Economics, Elsevier, vol. 32(5), pages 1105-1120, September.
    4. Kristian Skånberg & Åsa Svenfelt, 2022. "Expanding the IPAT identity to quantify backcasting sustainability scenarios," Futures & Foresight Science, John Wiley & Sons, vol. 4(2), June.
    5. Noboru Hidano & Takaaki Kato, 2008. "Determining variability of willingness to pay for Japan’s antiglobal-warming policies: a comparison of contingent valuation surveys," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 9(4), pages 259-281, December.
    6. Obi, Okey Francis, 2015. "Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1749-1758.
    7. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    8. David McCollum & Volker Krey & Keywan Riahi & Peter Kolp & Arnulf Grubler & Marek Makowski & Nebojsa Nakicenovic, 2013. "Climate policies can help resolve energy security and air pollution challenges," Climatic Change, Springer, vol. 119(2), pages 479-494, July.
    9. Matthias Kühnbach & Felix Guthoff & Anke Bekk & Ludger Eltrop, 2020. "Development of Scenarios for a Multi-Model System Analysis Based on the Example of a Cellular Energy System," Energies, MDPI, vol. 13(4), pages 1-23, February.
    10. J. Szolgayová & S. Fuss & T. Kaminski & M. Scholze & M. Gusti & M. Heimann & M. Tavoni, 2016. "The benefits of investing into improved carbon flux monitoring," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1239672-123, December.
    11. Keywan Riahi & Shilpa Rao & Volker Krey & Cheolhung Cho & Vadim Chirkov & Guenther Fischer & Georg Kindermann & Nebojsa Nakicenovic & Peter Rafaj, 2011. "RCP 8.5—A scenario of comparatively high greenhouse gas emissions," Climatic Change, Springer, vol. 109(1), pages 33-57, November.
    12. Avenyo, Elvis Korku & Tregenna, Fiona, 2022. "Greening manufacturing: Technology intensity and carbon dioxide emissions in developing countries," Applied Energy, Elsevier, vol. 324(C).
    13. Shrestha, Ram M. & Malla, Sunil & Liyanage, Migara H., 2007. "Scenario-based analyses of energy system development and its environmental implications in Thailand," Energy Policy, Elsevier, vol. 35(6), pages 3179-3193, June.
    14. Detlef Vuuren & Keywan Riahi, 2011. "The relationship between short-term emissions and long-term concentration targets," Climatic Change, Springer, vol. 104(3), pages 793-801, February.
    15. Cranston, G.R. & Hammond, G.P., 2010. "North and south: Regional footprints on the transition pathway towards a low carbon, global economy," Applied Energy, Elsevier, vol. 87(9), pages 2945-2951, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nebojsa Nakicenovic & Peter Kolp & Keywan Riahi & Mikiko Kainuma & Tatsuya Hanaoka, 2006. "Assessment of emissions scenarios revisited," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 137-173, September.
    2. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    3. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    4. Dagoumas, [alpha].S. & Barker, T.S., 2010. "Pathways to a low-carbon economy for the UK with the macro-econometric E3MG model," Energy Policy, Elsevier, vol. 38(6), pages 3067-3077, June.
    5. Cochran, Jaquelin & Mai, Trieu & Bazilian, Morgan, 2014. "Meta-analysis of high penetration renewable energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 246-253.
    6. Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.
    7. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    8. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    9. Tsuneyuki Morita & Hae-Cheol Lee, 1998. "Appendix: IPCC Emissions Scenarios Database," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(2), pages 1-4, December.
    10. Barbara Koelbl & Machteld Broek & André Faaij & Detlef Vuuren, 2014. "Uncertainty in Carbon Capture and Storage (CCS) deployment projections: a cross-model comparison exercise," Climatic Change, Springer, vol. 123(3), pages 461-476, April.
    11. Wang, Ke & Wang, Can & Chen, Jining, 2009. "Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change," Energy Policy, Elsevier, vol. 37(8), pages 2930-2940, August.
    12. Richard S.J. Tol, 2008. "Why Worry About Climate Change? A Research Agenda," Environmental Values, White Horse Press, vol. 17(4), pages 437-470, November.
    13. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    14. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    15. David Lam, 2011. "How the World Survived the Population Bomb: Lessons From 50 Years of Extraordinary Demographic History," Demography, Springer;Population Association of America (PAA), vol. 48(4), pages 1231-1262, November.
    16. Wissema, Wiepke & Dellink, Rob, 2007. "AGE analysis of the impact of a carbon energy tax on the Irish economy," Ecological Economics, Elsevier, vol. 61(4), pages 671-683, March.
    17. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    18. Larson, Donald F. & Breustedt, Gunnar, 2007. "Will markets direct investments under the Kyoto Protocol ?," Policy Research Working Paper Series 4131, The World Bank.
    19. Gusdorf, Francois & Hallegatte, Stephane, 2007. "Behaviors and housing inertia are key factors in determining the consequences of a shock in transportation costs," Energy Policy, Elsevier, vol. 35(6), pages 3483-3495, June.
    20. Rick Baker & Andrew Barker & Alan Johnston & Michael Kohlhaas, 2008. "The Stern Review: an assessment of its methodology," Staff Working Papers 0801, Productivity Commission, Government of Australia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:7:y:2006:i:3:p:137-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.