IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v58y2020i3d10.1007_s00181-018-1577-6.html
   My bibliography  Save this article

Realized volatility and jump testing in the Japanese electricity spot market

Author

Listed:
  • Aitor Ciarreta

    (University of the Basque Country, UPV/EHU)

  • Peru Muniain

    (University of the Basque Country, UPV/EHU)

  • Ainhoa Zarraga

    (University of the Basque Country, UPV/EHU)

Abstract

The analysis of price volatility in electricity markets is increasingly significant for market participants. Realized measures have proved to be a useful tool. In this paper, we analyze realized volatility calculated from half-hour electricity prices on the Japanese spot market for the period from April 2005 to December 2015. Our interest stems from the fact that Japan is an isolated country with an electricity market in the process of being deregulated. We apply six alternative jump tests available in the literature to decompose total realized variation into jump and continuous components. We find large differences from one test to another in the number of jump-days identified arising from the nature of the data and the characteristics of the tests. We then estimate several heterogeneous autoregressive models for total and decomposed realized volatility and also consider GARCH innovations. Our results show high persistence of volatility and significant jumps. Finally, we assess the performance and forecasting ability of the models using in-sample and out-of-sample criteria. The model selected with both types of criteria includes the jumps obtained using the Jiang and Oomen (J Econom 144:352–370, 2008) jump test as regressors together with lagged total variation and GARCH innovations. Our results are significant in helping participants in the Japanese electricity market to take optimal decisions based on price characteristics.

Suggested Citation

  • Aitor Ciarreta & Peru Muniain & Ainhoa Zarraga, 2020. "Realized volatility and jump testing in the Japanese electricity spot market," Empirical Economics, Springer, vol. 58(3), pages 1143-1166, March.
  • Handle: RePEc:spr:empeco:v:58:y:2020:i:3:d:10.1007_s00181-018-1577-6
    DOI: 10.1007/s00181-018-1577-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-018-1577-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-018-1577-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana-Maria Dumitru & Giovanni Urga, 2011. "Identifying Jumps in Financial Assets: A Comparison Between Nonparametric Jump Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 242-255, October.
    2. Chan, Kam Fong & Gray, Philip & van Campen, Bart, 2008. "A new approach to characterizing and forecasting electricity price volatility," International Journal of Forecasting, Elsevier, vol. 24(4), pages 728-743.
    3. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    4. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    5. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    6. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    9. Andrei Shleifer, 1985. "A Theory of Yardstick Competition," RAND Journal of Economics, The RAND Corporation, vol. 16(3), pages 319-327, Autumn.
    10. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
    11. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    12. Ciarreta, Aitor & Zarraga, Ainhoa, 2016. "Modeling realized volatility on the Spanish intra-day electricity market," Energy Economics, Elsevier, vol. 58(C), pages 152-163.
    13. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
    14. repec:taf:jnlbes:v:30:y:2012:i:2:p:242-255 is not listed on IDEAS
    15. Qu, Hui & Chen, Wei & Niu, Mengyi & Li, Xindan, 2016. "Forecasting realized volatility in electricity markets using logistic smooth transition heterogeneous autoregressive models," Energy Economics, Elsevier, vol. 54(C), pages 68-76.
    16. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    17. repec:hal:journl:peer-00741630 is not listed on IDEAS
    18. Ullrich, Carl J., 2012. "Realized volatility and price spikes in electricity markets: The importance of observation frequency," Energy Economics, Elsevier, vol. 34(6), pages 1809-1818.
    19. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    20. Haugom, Erik & Westgaard, Sjur & Solibakke, Per Bjarte & Lien, Gudbrand, 2011. "Realized volatility and the influence of market measures on predictability: Analysis of Nord Pool forward electricity data," Energy Economics, Elsevier, vol. 33(6), pages 1206-1215.
    21. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    22. Peter Cramton, 2017. "Electricity market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 589-612.
    23. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    24. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    25. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    26. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    27. Aitor Ciarreta & Peru Muniain & Ainhoa Zarraga, 2017. "Modeling and forecasting realized volatility in German–Austrian continuous intraday electricity prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(6), pages 680-690, September.
    28. Tauchen, George & Zhou, Hao, 2011. "Realized jumps on financial markets and predicting credit spreads," Journal of Econometrics, Elsevier, vol. 160(1), pages 102-118, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaoxiu Qiao & Yangli Cao & Feng Ma & Weiping Li, 2023. "Liquidity and realized covariance forecasting: a hybrid method with model uncertainty," Empirical Economics, Springer, vol. 64(1), pages 437-463, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aitor Ciarreta & Peru Muniainy & Ainhoa Zarraga, 2017. "Modelling Realized Volatility in Electricity Spot Prices: New insights and Application to the Japanese Electricity Market," ISER Discussion Paper 0991, Institute of Social and Economic Research, Osaka University.
    2. Qu, Hui & Duan, Qingling & Niu, Mengyi, 2018. "Modeling the volatility of realized volatility to improve volatility forecasts in electricity markets," Energy Economics, Elsevier, vol. 74(C), pages 767-776.
    3. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    4. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    5. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    6. Worapree Maneesoonthorn & Gael M Martin & Catherine S Forbes, 2018. "Dynamic price jumps: The performance of high frequency tests and measures, and the robustness of inference," Monash Econometrics and Business Statistics Working Papers 17/18, Monash University, Department of Econometrics and Business Statistics.
    7. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Dumitru, Ana-Maria & Hizmeri, Rodrigo & Izzeldin, Marwan, 2019. "Forecasting the Realized Variance in the Presence of Intraday Periodicity," EconStor Preprints 193631, ZBW - Leibniz Information Centre for Economics.
    9. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    10. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    11. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    12. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    13. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    14. Gilder, Dudley & Shackleton, Mark B. & Taylor, Stephen J., 2014. "Cojumps in stock prices: Empirical evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 443-459.
    15. Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
    16. repec:ipg:wpaper:2014-053 is not listed on IDEAS
    17. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    18. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    19. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    20. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    21. Li, Xiafei & Liao, Yin & Lu, Xinjie & Ma, Feng, 2022. "An oil futures volatility forecast perspective on the selection of high-frequency jump tests," Energy Economics, Elsevier, vol. 116(C).

    More about this item

    Keywords

    Realized volatility; Jump tests; Heterogeneous autoregressive models; Electricity markets; GARCH;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:58:y:2020:i:3:d:10.1007_s00181-018-1577-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.