IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v64y2023i1d10.1007_s00181-022-02248-y.html
   My bibliography  Save this article

Liquidity and realized covariance forecasting: a hybrid method with model uncertainty

Author

Listed:
  • Gaoxiu Qiao

    (Southwest Jiaotong University)

  • Yangli Cao

    (Southwest Jiaotong University)

  • Feng Ma

    (Southwest Jiaotong University)

  • Weiping Li

    (Oklahoma State University)

Abstract

This paper investigates the realized covariance forecasting and liquidity effects on the covariance. The realized covariance is calculated based on the high frequency data of CSI 300 stock index and futures, and nonlinear support vector regression (SVR) approach is employed to evaluate the out-of-sample forecasting ability of HAR-type models. Then, we propose the hybrid method, named the weighted average windows (WAveW) method based on both OLS and SVR forecasts, to accommodate model uncertainty. The empirical results find that the performance of the WAveW method based on SVR forecasts obtains more accurate forecasting than the OLS and SVR methods, and the incorporation of liquidity helps to improve the forecasting ability. From the portfolio selection perspective, we show that our new method achieves higher economic value, which further confirms the effectiveness of our proposed hybrid method. The results are robust under alternative rolling windows, liquidity, covariance and cojumps.

Suggested Citation

  • Gaoxiu Qiao & Yangli Cao & Feng Ma & Weiping Li, 2023. "Liquidity and realized covariance forecasting: a hybrid method with model uncertainty," Empirical Economics, Springer, vol. 64(1), pages 437-463, January.
  • Handle: RePEc:spr:empeco:v:64:y:2023:i:1:d:10.1007_s00181-022-02248-y
    DOI: 10.1007/s00181-022-02248-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-022-02248-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-022-02248-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Jin & John M. Maheu, 2013. "Modeling Realized Covariances and Returns," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 335-369, March.
    2. Xu, Yanyan & Huang, Dengshi & Ma, Feng & Qiao, Gaoxiu, 2019. "The heterogeneous impact of liquidity on volatility in Chinese stock index futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 73-85.
    3. Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    5. Yongmin Zhang & Shusheng Ding, 2018. "Return and volatility co-movement in commodity futures markets: the effects of liquidity risk," Quantitative Finance, Taylor & Francis Journals, vol. 18(9), pages 1471-1486, September.
    6. Qiao, Gaoxiu & Teng, Yuxin & Li, Weiping & Liu, Wenwen, 2019. "Improving volatility forecasting based on Chinese volatility index information: Evidence from CSI 300 index and futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 133-151.
    7. Haugom, Erik & Ray, Rina, 2017. "Heterogeneous traders, liquidity, and volatility in crude oil futures market," Journal of Commodity Markets, Elsevier, vol. 5(C), pages 36-49.
    8. Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
    9. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    10. Shane A. Corwin & Paul Schultz, 2012. "A Simple Way to Estimate Bid‐Ask Spreads from Daily High and Low Prices," Journal of Finance, American Finance Association, vol. 67(2), pages 719-760, April.
    11. Bauer, Gregory H. & Vorkink, Keith, 2011. "Forecasting multivariate realized stock market volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 93-101, January.
    12. Kingsley Y. L. Fong & Craig W. Holden & Charles A. Trzcinka, 2017. "What Are the Best Liquidity Proxies for Global Research?," Review of Finance, European Finance Association, vol. 21(4), pages 1355-1401.
    13. Akkoc, Ugur & Civcir, Irfan, 2019. "Dynamic linkages between strategic commodities and stock market in Turkey: Evidence from SVAR-DCC-GARCH model," Resources Policy, Elsevier, vol. 62(C), pages 231-239.
    14. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    15. Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2019. "Volatility-dependent correlations: further evidence of when, where and how," Empirical Economics, Springer, vol. 57(2), pages 505-540, August.
    16. Hongwei Zhang & Qiang He & Ben Jacobsen & Fuwei Jiang, 2020. "Forecasting stock returns with model uncertainty and parameter instability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 629-644, August.
    17. repec:taf:jnlbes:v:30:y:2012:i:2:p:242-255 is not listed on IDEAS
    18. Xu, Yongdeng & Taylor, Nick & Lu, Wenna, 2018. "Illiquidity and volatility spillover effects in equity markets during and after the global financial crisis: An MEM approach," International Review of Financial Analysis, Elsevier, vol. 56(C), pages 208-220.
    19. Yongmin Zhang & Shusheng Ding & Eric Scheffel, 2018. "Policy impact on volatility dynamics in commodity futures markets: Evidence from China," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(10), pages 1227-1245, October.
    20. Fu, Sibao & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2019. "Evolutionary support vector machine for RMB exchange rate forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 692-704.
    21. Santiago Gamba-Santamaria & Jose Eduardo Gomez-Gonzalez & Jorge Luis Hurtado-Guarin & Luis Fernando Melo-Velandia, 2019. "Volatility spillovers among global stock markets: measuring total and directional effects," Empirical Economics, Springer, vol. 56(5), pages 1581-1599, May.
    22. Hai Lin & Chunchi Wu & Guofu Zhou, 2018. "Forecasting Corporate Bond Returns with a Large Set of Predictors: An Iterated Combination Approach," Management Science, INFORMS, vol. 64(9), pages 4218-4238, September.
    23. Aitor Ciarreta & Peru Muniain & Ainhoa Zarraga, 2020. "Realized volatility and jump testing in the Japanese electricity spot market," Empirical Economics, Springer, vol. 58(3), pages 1143-1166, March.
    24. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    25. Piccotti, Louis R., 2018. "Jumps, cojumps, and efficiency in the spot foreign exchange market," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 49-67.
    26. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    27. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    28. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018. "Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions," Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
    29. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "European quanto option pricing in presence of liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 230-244.
    30. Gaoxiu Qiao & Yuxin Teng & Yanyan Xu & Lu Wang, 2020. "The cross-market dynamic effects of liquidity on volatility: evidence from Chinese stock index and futures markets," Applied Economics, Taylor & Francis Journals, vol. 52(1), pages 85-99, January.
    31. Gaoxun Zhang & Gaoxiu Qiao, 2021. "Out-of-sample realized volatility forecasting: does the support vector regression compete combination methods," Applied Economics, Taylor & Francis Journals, vol. 53(19), pages 2192-2205, April.
    32. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    33. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    34. Bollerslev, Tim & Meddahi, Nour & Nyawa, Serge, 2019. "High-dimensional multivariate realized volatility estimation," Journal of Econometrics, Elsevier, vol. 212(1), pages 116-136.
    35. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    36. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    37. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun & Zhang, Yue, 2019. "Pricing discrete barrier options under jump-diffusion model with liquidity risk," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 347-368.
    38. Goyenko, Ruslan Y. & Holden, Craig W. & Trzcinka, Charles A., 2009. "Do liquidity measures measure liquidity?," Journal of Financial Economics, Elsevier, vol. 92(2), pages 153-181, May.
    39. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    40. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    41. Jin, Jiayu & Han, Liyan & Wu, Lei & Zeng, Hongchao, 2020. "The hedging effect of green bonds on carbon market risk," International Review of Financial Analysis, Elsevier, vol. 71(C).
    42. Tian, Jing & Anderson, Heather M., 2014. "Forecast combinations under structural break uncertainty," International Journal of Forecasting, Elsevier, vol. 30(1), pages 161-175.
    43. Yuta yamauchi & Yasuhiro Omori, 2019. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," CIRJE F-Series CIRJE-F-1117, CIRJE, Faculty of Economics, University of Tokyo.
    44. repec:oup:rfinst:v:21:y:2017:i:4:p:1355-1401. is not listed on IDEAS
    45. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    46. Farshid Abdi & Angelo Ranaldo, 2017. "A Simple Estimation of Bid-Ask Spreads from Daily Close, High, and Low Prices," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4437-4480.
    47. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    48. Yuta Yamauchi & Yasuhiro Omori, 2018. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," Papers 1809.09928, arXiv.org, revised Mar 2019.
    49. Ma, Feng & Liao, Yin & Zhang, Yaojie & Cao, Yang, 2019. "Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 40-55.
    50. Jiang, Yonghong & Jiang, Cheng & Nie, He & Mo, Bin, 2019. "The time-varying linkages between global oil market and China's commodity sectors: Evidence from DCC-GJR-GARCH analyses," Energy, Elsevier, vol. 166(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Huang, Dengshi & Ma, Feng & Qiao, Gaoxiu, 2019. "Liquidity and realized range-based volatility forecasting: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1102-1113.
    2. Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
    3. Xu, Yanyan & Huang, Dengshi & Ma, Feng & Qiao, Gaoxiu, 2019. "The heterogeneous impact of liquidity on volatility in Chinese stock index futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 73-85.
    4. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    6. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    7. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    8. Ayad Assoil & Ndéné Ka & Jules Sadefo-Kamdem, 2021. "Analysis of the dynamic relationship between liquidity proxies and returns on the French CAC 40 index," SN Business & Economics, Springer, vol. 1(10), pages 1-23, October.
    9. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Chatziantoniou, Ioannis & Degiannakis, Stavros & Filis, George, 2019. "Futures-based forecasts: How useful are they for oil price volatility forecasting?," Energy Economics, Elsevier, vol. 81(C), pages 639-649.
    11. Marshall, Ben R. & Nguyen, Nhut H. & Visaltanachoti, Nuttawat, 2018. "Do liquidity proxies measure liquidity accurately in ETFs?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 94-111.
    12. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    13. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    14. Ramos, Henrique Pinto & Righi, Marcelo Brutti, 2020. "Liquidity, implied volatility and tail risk: A comparison of liquidity measures," International Review of Financial Analysis, Elsevier, vol. 69(C).
    15. Roland Weigand, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," Working Papers 144, Bavarian Graduate Program in Economics (BGPE).
    16. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    17. Lauter, Tobias & Prokopczuk, Marcel, 2022. "Measuring commodity market quality," Journal of Banking & Finance, Elsevier, vol. 145(C).
    18. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
    19. Díaz, Antonio & Escribano, Ana, 2020. "Measuring the multi-faceted dimension of liquidity in financial markets: A literature review," Research in International Business and Finance, Elsevier, vol. 51(C).
    20. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:64:y:2023:i:1:d:10.1007_s00181-022-02248-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.