IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v168y2021i3d10.1007_s10584-021-03229-3.html
   My bibliography  Save this article

Global scenarios of residential heating and cooling energy demand and CO2 emissions

Author

Listed:
  • Alessio Mastrucci

    (International Institute for Applied Systems Analysis (IIASA), Energy, Climate, and Environment (ECE) Program)

  • Bas Ruijven

    (International Institute for Applied Systems Analysis (IIASA), Energy, Climate, and Environment (ECE) Program)

  • Edward Byers

    (International Institute for Applied Systems Analysis (IIASA), Energy, Climate, and Environment (ECE) Program)

  • Miguel Poblete-Cazenave

    (International Institute for Applied Systems Analysis (IIASA), Energy, Climate, and Environment (ECE) Program)

  • Shonali Pachauri

    (International Institute for Applied Systems Analysis (IIASA), Energy, Climate, and Environment (ECE) Program)

Abstract

Buildings account for 36% of global final energy demand and are key to mitigating climate change. Assessing the evolution of the global building stock and its energy demand is critical to support mitigation strategies. However, most global studies lack granularity and overlook heterogeneity in the building sector, limiting the evaluation of demand transformation scenarios. We develop global residential building scenarios along the shared socio-economic pathways (SSPs) 1–3 and assess the evolution of building stock, energy demand, and CO2 emissions for space heating and cooling with MESSAGEix-Buildings, a modelling framework soft-linked to an integrated assessment framework. MESSAGEix-Buildings combines bottom-up modelling of energy demand, stock turnover, and discrete choice modelling for energy efficiency decisions, and accounts for heterogeneity in geographical contexts, socio-economics, and buildings characteristics. Global CO2 emissions for space heating are projected to decrease between 34.4 (SSP3) and 52.5% (SSP1) by 2050 under energy efficiency improvements and electrification. Space cooling demand starkly rises in developing countries, with CO2 emissions increasing globally by 58.2 (SSP1) to 85.2% (SSP3) by 2050. Scenarios substantially differ in the uptake of energy efficient new construction and renovations, generally higher for single-family homes, and in space cooling patterns across income levels and locations, with most of the demand in the global south driven by medium- and high-income urban households. This study contributes an advancement in the granularity of building sector knowledge to be assessed in integration with other sources of emissions in the context of global climate change mitigation and sustainable development.

Suggested Citation

  • Alessio Mastrucci & Bas Ruijven & Edward Byers & Miguel Poblete-Cazenave & Shonali Pachauri, 2021. "Global scenarios of residential heating and cooling energy demand and CO2 emissions," Climatic Change, Springer, vol. 168(3), pages 1-26, October.
  • Handle: RePEc:spr:climat:v:168:y:2021:i:3:d:10.1007_s10584-021-03229-3
    DOI: 10.1007/s10584-021-03229-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03229-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03229-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    2. Stefan Pauliuk & Karin Sjöstrand & Daniel B. Müller, 2013. "Transforming the Norwegian Dwelling Stock to Reach the 2 Degrees Celsius Climate Target," Journal of Industrial Ecology, Yale University, vol. 17(4), pages 542-554, August.
    3. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Author Correction: Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(8), pages 699-699, August.
    4. repec:pal:palcom:v:2016:y:2016:i:palcomms201613:p:16013- is not listed on IDEAS
    5. Liang, Xin & Yu, Tao & Hong, Jingke & Shen, Geoffrey Qiping, 2019. "Making incentive policies more effective: An agent-based model for energy-efficiency retrofit in China," Energy Policy, Elsevier, vol. 126(C), pages 177-189.
    6. Levesque, Antoine & Pietzcker, Robert C. & Baumstark, Lavinia & De Stercke, Simon & Grübler, Arnulf & Luderer, Gunnar, 2018. "How much energy will buildings consume in 2100? A global perspective within a scenario framework," Energy, Elsevier, vol. 148(C), pages 514-527.
    7. Levesque, Antoine & Pietzcker, Robert C. & Luderer, Gunnar, 2019. "Halving energy demand from buildings: The impact of low consumption practices," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 253-266.
    8. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    9. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    10. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(7), pages 589-599, July.
    11. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    12. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    13. Miguel Poblete-Cazenave & Shonali Pachauri & Edward Byers & Alessio Mastrucci & Bas Ruijven, 2021. "Global scenarios of household access to modern energy services under climate mitigation policy," Nature Energy, Nature, vol. 6(8), pages 824-833, August.
    14. Eom, Jiyong & Clarke, Leon & Kim, Son H. & Kyle, Page & Patel, Pralit, 2012. "China's building energy demand: Long-term implications from a detailed assessment," Energy, Elsevier, vol. 46(1), pages 405-419.
    15. Harvey, L.D. Danny, 2014. "Global climate-oriented building energy use scenarios," Energy Policy, Elsevier, vol. 67(C), pages 473-487.
    16. Tomoko Hasegawa & Chan Park & Shinichiro Fujimori & Kiyoshi Takahashi & Yasuaki Hijioka & Toshihiko Masui, 2016. "Quantifying the economic impact of changes in energy demand for space heating and cooling systems under varying climatic scenarios," Palgrave Communications, Palgrave Macmillan, vol. 2(1), pages 1-8, December.
    17. Arnulf Grubler & Charlie Wilson & Nuno Bento & Benigna Boza-Kiss & Volker Krey & David L. McCollum & Narasimha D. Rao & Keywan Riahi & Joeri Rogelj & Simon Stercke & Jonathan Cullen & Stefan Frank & O, 2018. "A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies," Nature Energy, Nature, vol. 3(6), pages 515-527, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Chong, 2023. "Towards balanced low-carbon development: Driver and complex network of urban-rural energy-carbon performance gap in China," Applied Energy, Elsevier, vol. 333(C).
    2. Daioglou, Vassilis & Mikropoulos, Efstratios & Gernaat, David & van Vuuren, Detlef P., 2022. "Efficiency improvement and technology choice for energy and emission reductions of the residential sector," Energy, Elsevier, vol. 243(C).
    3. Laibao Liu & Gang He & Mengxi Wu & Gang Liu & Haoran Zhang & Ying Chen & Jiashu Shen & Shuangcheng Li, 2023. "Climate change impacts on planned supply–demand match in global wind and solar energy systems," Nature Energy, Nature, vol. 8(8), pages 870-880, August.
    4. Puppala, Harish & Arora, Manoj Kumar & Garlapati, Nagababu & Bheemaraju, Amarnath, 2023. "GIS-MCDM based framework to evaluate site suitability and CO2 mitigation potential of earth-air-heat exchanger: A case study," Renewable Energy, Elsevier, vol. 216(C).
    5. Francesco Pietro Colelli & Johannes Emmerling & Giacomo Marangoni & Malcolm N. Mistry & Enrica Cian, 2022. "Increased energy use for adaptation significantly impacts mitigation pathways," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Nassipkul Dyussembekova & Nazym Temirgaliyeva & Dias Umyshev & Madina Shavdinova & Reiner Schuett & Damesh Bektalieva, 2022. "Assessment of Energy Efficiency Measures’ Impact on Energy Performance in the Educational Building of Kazakh-German University in Almaty," Sustainability, MDPI, vol. 14(16), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edelenbosch, OY & Rovelli, D & Levesque, A & Marangoni, G & Tavoni, M, 2021. "Long term, cross-country effects of buildings insulation policies," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    2. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    3. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    4. Ahmad Murtaza Ershad & Robert Pietzcker & Falko Ueckerdt & Gunnar Luderer, 2020. "Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040," Energies, MDPI, vol. 13(9), pages 1-19, May.
    5. Daioglou, Vassilis & Mikropoulos, Efstratios & Gernaat, David & van Vuuren, Detlef P., 2022. "Efficiency improvement and technology choice for energy and emission reductions of the residential sector," Energy, Elsevier, vol. 243(C).
    6. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    8. Louis-Gaëtan Giraudet & Céline Guivarch, 2016. "Global warming as an asymmetric public bad," Working Papers 2016.26, FAERE - French Association of Environmental and Resource Economists.
    9. Filippo Pavanello & Enrica Cian & Marinella Davide & Malcolm Mistry & Talita Cruz & Paula Bezerra & Dattakiran Jagu & Sebastian Renner & Roberto Schaeffer & André F. P. Lucena, 2021. "Air-conditioning and the adaptation cooling deficit in emerging economies," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Clara Camarasa & Érika Mata & Juan Pablo Jiménez Navarro & Janet Reyna & Paula Bezerra & Gerd Brantes Angelkorte & Wei Feng & Faidra Filippidou & Sebastian Forthuber & Chioke Harris & Nina Holck Sandb, 2022. "A global comparison of building decarbonization scenarios by 2050 towards 1.5–2 °C targets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Levesque, Antoine & Pietzcker, Robert C. & Baumstark, Lavinia & De Stercke, Simon & Grübler, Arnulf & Luderer, Gunnar, 2018. "How much energy will buildings consume in 2100? A global perspective within a scenario framework," Energy, Elsevier, vol. 148(C), pages 514-527.
    12. Tang, Bao-Jun & Guo, Yang-Yang & Yu, Biying & Harvey, L.D. Danny, 2021. "Pathways for decarbonizing China’s building sector under global warming thresholds," Applied Energy, Elsevier, vol. 298(C).
    13. Xiaoyang Zhong & Mingming Hu & Sebastiaan Deetman & Bernhard Steubing & Hai Xiang Lin & Glenn Aguilar Hernandez & Carina Harpprecht & Chunbo Zhang & Arnold Tukker & Paul Behrens, 2021. "Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    15. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    16. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    17. Joëlle Noailly & Roger Smeets, 2022. "Financing Energy Innovation: Internal Finance and the Direction of Technical Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 145-169, September.
    18. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    19. Wu, Qingyang & Wang, Yanying, 2022. "How does carbon emission price stimulate enterprises' total factor productivity? Insights from China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 109(C).
    20. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:168:y:2021:i:3:d:10.1007_s10584-021-03229-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.