IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i1d10.1007_s10584-020-02855-7.html
   My bibliography  Save this article

Climate change impacts and adaptations for wheat employing multiple climate and crop modelsin Pakistan

Author

Listed:
  • Jamshad Hussain

    (University of Agriculture)

  • Tasneem Khaliq

    (University of Agriculture)

  • Senthold Asseng

    (University of Florida)

  • Umer Saeed

    (University of Agriculture)

  • Ashfaq Ahmad

    (University of Agriculture)

  • Burhan Ahmad

    (Pakistan Meteorological Department)

  • Ishfaq Ahmad

    (University of Florida)

  • Muhammad Fahad

    (PMAS-Arid Agriculture University)

  • Muhammad Awais

    (Islamia University Bahawalpur-Pakistan)

  • Asmat Ullah

    (Directorate of Agronomy, Ayub Agricultural Research Institute)

  • Gerrit Hoogenboom

    (Institute for Sustainable Food Systems 184 Rogers Hall, University of Florida)

Abstract

Comparing outputs of multiple climate and crop models is an option to assess the uncertainty in simulations in a changing climate. The use of multiple wheat models under five plausible future simulated climatic conditions is rarely found in literature. CERES-Wheat, DSSAT-Nwheat, CROPSIM-Wheat, and APSIM-Wheat models were calibrated with observed data form eleven sowing dates (15 October to 15 March) of irrigated wheat trails at Faisalabad, Pakistan, to explore close to real climate changing impacts and adaptations. Twenty-nine GCM of CMIP5 were used to generate future climate scenarios during 2040–2069 under RCP 8.5. These scenarios were categorized among five climatic conditions (Cool/Wet, Cool/Dry, Hot/Wet, Hot/Dry, Middle) on the basis of monthly changes in temperature and rainfall of wheat season using a stretched distribution approach (STA). The five GCM at Faisalabad and Layyah were selected and used in the wheat multimodels set to CO2 571 ppm. In the future, the temperature of both locations will elevate 2–3 °C under the five climatic conditions, although Faisalabad will be drier and Layyah will be wetter as compared with baseline conditions. Climate change impacts were quantified on wheat sown on different dates, including 1 November, 15 November, and 30 November which showed average reduction at semiarid and arid environment by 23.5%, 19.8%, and 31%, respectively. Agronomic and breeding options offset the climate change impacts and also increased simulated yield about 20% in all climatic conditions. The number of GCMs was considerably different in each quadrate of STA, showing the uncertainty in possible future climatic conditions of both locations. Uncertainty among wheat models was higher at Layyah as compared with Faisalabad. Under Hot/Dry and Hot/Wet climatic conditions, wheat models were the most uncertain to simulate impacts and adaptations. DSSAT-Nwheat and APSIM-Wheat were the most and least sensitive to changing temperature among years and climatic conditions, respectively.

Suggested Citation

  • Jamshad Hussain & Tasneem Khaliq & Senthold Asseng & Umer Saeed & Ashfaq Ahmad & Burhan Ahmad & Ishfaq Ahmad & Muhammad Fahad & Muhammad Awais & Asmat Ullah & Gerrit Hoogenboom, 2020. "Climate change impacts and adaptations for wheat employing multiple climate and crop modelsin Pakistan," Climatic Change, Springer, vol. 163(1), pages 253-266, November.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:1:d:10.1007_s10584-020-02855-7
    DOI: 10.1007/s10584-020-02855-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02855-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02855-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thornton, Philip K. & Jones, Peter G. & Alagarswamy, Gopal & Andresen, Jeff & Herrero, Mario, 2010. "Adapting to climate change: Agricultural system and household impacts in East Africa," Agricultural Systems, Elsevier, vol. 103(2), pages 73-82, February.
    2. Frank Ewert, 2012. "Opportunities in climate change?," Nature Climate Change, Nature, vol. 2(3), pages 153-154, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ishaque, Wajid & Osman, Raheel & Hafiza, Barira Shoukat & Malghani, Saadatullah & Zhao, Ben & Xu, Ming & Ata-Ul-Karim, Syed Tahir, 2023. "Quantifying the impacts of climate change on wheat phenology, yield, and evapotranspiration under irrigated and rainfed conditions," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdoul G. Sam & Babatunde O. Abidoye & Sihle Mashaba, 2021. "Climate change and household welfare in sub-Saharan Africa: empirical evidence from Swaziland," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 439-455, April.
    2. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    3. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    4. Phemelo Tamasiga & Helen Onyeaka & Adenike Akinsemolu & Malebogo Bakwena, 2023. "The Inter-Relationship between Climate Change, Inequality, Poverty and Food Security in Africa: A Bibliometric Review and Content Analysis Approach," Sustainability, MDPI, vol. 15(7), pages 1-35, March.
    5. Anika Reetsch & Kai Schwärzel & Christina Dornack & Shadrack Stephene & Karl-Heinz Feger, 2020. "Optimising Nutrient Cycles to Improve Food Security in Smallholder Farming Families—A Case Study from Banana-Coffee-Based Farming in the Kagera Region, NW Tanzania," Sustainability, MDPI, vol. 12(21), pages 1-34, November.
    6. Edimilson Costa Lucas & Wesley Mendes Da Silva & Gustavo Silva Araujo, 2017. "Does Extreme Rainfall Lead to Heavy Economic Losses in the Food Industry?," Working Papers Series 462, Central Bank of Brazil, Research Department.
    7. Quandt, A. & Kimathi, Y.A., 2017. "Adapting livelihoods to floods and droughts in arid Kenya: Local perspectives and insights," African Journal of Rural Development (AFJRD), AFrican Journal of Rural Development (AFJRD), vol. 1(1), June.
    8. Sally Brooks & Michael Loevinsohn, 2011. "Shaping agricultural innovation systems responsive to food insecurity and climate change," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 185-200, August.
    9. Webber, Heidi & Gaiser, Thomas & Ewert, Frank, 2014. "What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa?," Agricultural Systems, Elsevier, vol. 127(C), pages 161-177.
    10. Zimmermann, Andrea & Webber, Heidi & Zhao, Gang & Ewert, Frank & Kros, Johannes & Wolf, Joost & Britz, Wolfgang & de Vries, Wim, 2017. "Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements," Agricultural Systems, Elsevier, vol. 157(C), pages 81-92.
    11. Berazneva, Julia & Lee, David R. & Place, Frank & Jakubson, George, 2018. "Allocation and Valuation of Smallholder Maize Residues in Western Kenya," Ecological Economics, Elsevier, vol. 152(C), pages 172-182.
    12. Sartas, Murat & Schut, Marc & Proietti, Claudio & Thiele, Graham & Leeuwis, Cees, 2020. "Scaling Readiness: Science and practice of an approach to enhance impact of research for development," Agricultural Systems, Elsevier, vol. 183(C).
    13. Milgroom, J. & Giller, K.E., 2013. "Courting the rain: Rethinking seasonality and adaptation to recurrent drought in semi-arid southern Africa," Agricultural Systems, Elsevier, vol. 118(C), pages 91-104.
    14. E. Eyshi Rezaei & T. Gaiser & S. Siebert & F. Ewert, 2015. "Adaptation of crop production to climate change by crop substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1155-1174, October.
    15. Denis Macharia & Erneus Kaijage & Leif Kindberg & Grace Koech & Lilian Ndungu & Anastasia Wahome & Robinson Mugo, 2020. "Mapping Climate Vulnerability of River Basin Communities in Tanzania to Inform Resilience Interventions," Sustainability, MDPI, vol. 12(10), pages 1-24, May.
    16. Ignaciuk, A. & Maggio, G. & Mastrorillo, M. & Sitko, N., 2021. "Adapting to high temperatures: evidence on the impacts of sustainable agricultural practices in Uganda," ESA Working Papers 309364, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    17. Clay, Nathan & King, Brian, 2019. "Smallholders’ uneven capacities to adapt to climate change amid Africa’s ‘green revolution’: Case study of Rwanda’s crop intensification program," World Development, Elsevier, vol. 116(C), pages 1-14.
    18. Mwaura, Francis M. & Muwanika, Fred R., 2018. "Providing irrigation water as a public utility to enhance agricultural productivity in Uganda," Utilities Policy, Elsevier, vol. 55(C), pages 99-109.
    19. Lazzaroni, S. & Bedi, A.S., 2014. "Weather variability and food consumption," ISS Working Papers - General Series 51272, International Institute of Social Studies of Erasmus University Rotterdam (ISS), The Hague.
    20. Belissa, Temesgen Keno & Lensink, Robert & van Asseldonk, Marcel, 2020. "Risk and ambiguity aversion behavior in index-based insurance uptake decisions: Experimental evidence from Ethiopia," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 718-730.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:1:d:10.1007_s10584-020-02855-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.