IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v137y2016i1d10.1007_s10584-016-1675-4.html
   My bibliography  Save this article

Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM)

Author

Listed:
  • Delavane B. Diaz

    (Electric Power Research Institute, Energy and Environmental Analysis Group)

Abstract

Coastal sector impacts from sea level rise (SLR) are a key component of the projected economic damages of climate change, a major input to decision-making and design of climate policy. Moreover, the ultimate global costs to coastal resources will depend strongly on adaptation, society’s response to cope with the local impacts. This paper presents a new open-source optimization model to assess global coastal impacts from SLR from the perspective of economic efficiency. The Coastal Impact and Adaptation Model (CIAM) determines the optimal strategy for adaptation at the local level, evaluating over 12,000 coastal segments, as described in the DIVA database (Vafeidis et al. 2006), based on their socioeconomic characteristics and the potential impacts of relative sea level rise and uncertain sea level extremes. A deterministic application of CIAM demonstrates the model’s ability to assess local impacts and direct costs, choose the least-cost adaptation, and estimate global net damages for several climate scenarios that account for both global and local components of SLR (Kopp et al. 2014). CIAM finds that there is large potential for coastal adaptation to reduce the expected impacts of SLR compared to the alternative of no adaptation, lowering global net present costs through 2100 by a factor of seven to less than $1.7 trillion, although this does not include initial transition costs to overcome an under-adapted current state. In addition to producing aggregate estimates, CIAM results can also be interpreted at the local level, where retreat (e.g., relocate inland) is often a more cost-effective adaptation strategy than protect (e.g., construct physical defenses).

Suggested Citation

  • Delavane B. Diaz, 2016. "Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM)," Climatic Change, Springer, vol. 137(1), pages 143-156, July.
  • Handle: RePEc:spr:climat:v:137:y:2016:i:1:d:10.1007_s10584-016-1675-4
    DOI: 10.1007/s10584-016-1675-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1675-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1675-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luke Brander & Raymond Florax & Jan Vermaat, 2006. "The Empirics of Wetland Valuation: A Comprehensive Summary and a Meta-Analysis of the Literature," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(2), pages 223-250, February.
    2. David Anthoff & Robert Nicholls & Richard Tol, 2010. "The economic impact of substantial sea-level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(4), pages 321-335, April.
    3. Richard Tol, 2007. "The double trade-off between adaptation and mitigation for sea level rise: an application of FUND," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 741-753, June.
    4. Samuel Fankhauser & Thomas K.J. McDermott, 2013. "Understanding the adaptation deficit: why are poor countries more vulnerable to climate events than rich countries?," GRI Working Papers 134, Grantham Research Institute on Climate Change and the Environment.
    5. Tol, Richard S. J., 1996. "The damage costs of climate change towards a dynamic representation," Ecological Economics, Elsevier, vol. 19(1), pages 67-90, October.
    6. Yohe Gary & Neumann James & Ameden Holly, 1995. "Assessing the Economic Cost of Greenhouse-Induced Sea Level Rise: Methods and Application in Support of a National Survey," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages 78-97, November.
    7. S Fankhauser, 1995. "Protection versus Retreat: The Economic Costs of Sea-Level Rise," Environment and Planning A, , vol. 27(2), pages 299-319, February.
    8. Francesco Bosello & Roberto Roson & Richard Tol, 2007. "Economy-wide Estimates of the Implications of Climate Change: Sea Level Rise," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(3), pages 549-571, July.
    9. Roy Darwin & Richard Tol, 2001. "Estimates of the Economic Effects of Sea Level Rise," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 19(2), pages 113-129, June.
    10. Jochen Hinkel & Detlef Vuuren & Robert Nicholls & Richard Klein, 2013. "The effects of adaptation and mitigation on coastal flood impacts during the 21st century. An application of the DIVA and IMAGE models," Climatic Change, Springer, vol. 117(4), pages 783-794, April.
    11. Deke, Oliver & Hooss, Kurt Georg & Kasten, Christiane & Klepper, Gernot & Springer, Katrin, 2001. "Economic impact of climate change: simulations with a regionalized climate-economy model," Kiel Working Papers 1065, Kiel Institute for the World Economy (IfW Kiel).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    3. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    4. Merrick, James H. & Weyant, John P., 2019. "On choosing the resolution of normative models," European Journal of Operational Research, Elsevier, vol. 279(2), pages 511-523.
    5. Lilai Xu & Shengping Ding & Vilas Nitivattananon & Jianxiong Tang, 2021. "Long-Term Dynamic of Land Reclamation and Its Impact on Coastal Flooding: A Case Study in Xiamen, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    6. Simon Dietz & Felix Koninx, 2022. "Economic impacts of melting of the Antarctic Ice Sheet," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Thomas David Pol & Jochen Hinkel, 2019. "Uncertainty representations of mean sea-level change: a telephone game?," Climatic Change, Springer, vol. 152(3), pages 393-411, March.
    8. Ferrazzi, Matteo & Kalantzis, Fotios & Zwart, Sanne, 2021. "Assessing climate change risks at the country level: The EIB scoring model," EIB Working Papers 2021/03, European Investment Bank (EIB).
    9. Si Ha & Hirokazu Tatano & Nobuhito Mori & Toshio Fujimi & Xinyu Jiang, 2021. "Cost–benefit analysis of adaptation to storm surge due to climate change in Osaka Bay, Japan," Climatic Change, Springer, vol. 169(3), pages 1-20, December.
    10. William D. Nordhaus, 2018. "Global Melting? The Economics of Disintegration of the Greenland Ice Sheet," NBER Working Papers 24640, National Bureau of Economic Research, Inc.
    11. Rennert, Kevin & Prest, Brian C. & Pizer, William & Newell, Richard G. & Anthoff, David & Kingdon, Cora & Rennels, Lisa & Cooke, Roger & Raftery, Adrian E. & Ševčíková, Hana & Errickson, Frank, 2021. "The Social Cost of Carbon: Advances in Long-Term Probabilistic Projections of Population, GDP, Emissions, and Discount Rates," RFF Working Paper Series 21-28, Resources for the Future.
    12. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    13. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    14. Ramiro Parrado & Francesco Bosello & Elisa Delpiazzo & Jochen Hinkel & Daniel Lincke & Sally Brown, 2020. "Fiscal effects and the potential implications on economic growth of sea-level rise impacts and coastal zone protection," Climatic Change, Springer, vol. 160(2), pages 283-302, May.
    15. Makoto Tamura & Naoko Kumano & Mizuki Yotsukuri & Hiromune Yokoki, 2019. "Global assessment of the effectiveness of adaptation in coastal areas based on RCP/SSP scenarios," Climatic Change, Springer, vol. 152(3), pages 363-377, March.
    16. Siqi Feng & Kexin Yang & Jianli Liu & Yvlu Yang & Luna Zhao & Jiahong Wen & Chengcheng Wan & Lijun Yan, 2023. "Multi-Hazard Population Exposure in Low-Elevation Coastal Zones of China from 1990 to 2020," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    17. Souleymane Diallo, 2023. "Natural resource wealth in sub-Saharan Africa: A boon for public investment in renewable energy?," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2023(2), pages 19-40.
    18. Guimbeau, Amanda & Ji, Xinde James & Long, Zi & Menon, Nidhiya, 2023. "Ocean Salinity, Early-Life Health, and Adaptation," IZA Discussion Papers 16463, Institute of Labor Economics (IZA).
    19. Junlin Bao & Shu Gao & Jianxiong Ge, 2020. "Coastal engineering evolution in low-lying areas and adaptation practice since the eleventh century, Jiangsu Province, China," Climatic Change, Springer, vol. 162(2), pages 799-817, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bosello, Francesco & De Cian, Enrica, 2014. "Climate change, sea level rise, and coastal disasters. A review of modeling practices," Energy Economics, Elsevier, vol. 46(C), pages 593-605.
    2. Santosh R. Joshi & Marc Vielle & Frédéric Babonneau & Neil R. Edwards & Philip B. Holden, 2016. "Physical and Economic Consequences of Sea-Level Rise: A Coupled GIS and CGE Analysis Under Uncertainties," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(4), pages 813-839, December.
    3. Karen Fisher-Vanden & Ian Sue Wing & Elisa Lanzi & David Popp, 2013. "Modeling climate change feedbacks and adaptation responses: recent approaches and shortcomings," Climatic Change, Springer, vol. 117(3), pages 481-495, April.
    4. Andrea Bigano & Francesco Bosello & Roberto Roson & Richard Tol, 2008. "Economy-wide impacts of climate change: a joint analysis for sea level rise and tourism," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(8), pages 765-791, October.
    5. Francesco Bosello & Roberto Roson & Richard Tol, 2007. "Economy-wide Estimates of the Implications of Climate Change: Sea Level Rise," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(3), pages 549-571, July.
    6. Jonathan Pycroft & Jan Abrell & Juan-Carlos Ciscar, 2016. "The Global Impacts of Extreme Sea-Level Rise: A Comprehensive Economic Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 225-253, June.
    7. Francesco Bosello & Robert Nicholls & Julie Richards & Roberto Roson & Richard Tol, 2012. "Economic impacts of climate change in Europe: sea-level rise," Climatic Change, Springer, vol. 112(1), pages 63-81, May.
    8. T. Chatzivasileiadis & F. Estrada & M. W. Hofkes & R. S. J. Tol, 2019. "Systematic Sensitivity Analysis of the Full Economic Impacts of Sea Level Rise," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1183-1217, March.
    9. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 09916, Department of Economics, University of Sussex Business School.
    10. Francesco Bosello & Lorenza Campagnolo & Raffaello Cervigni & Fabio Eboli, 2018. "Climate Change and Adaptation: The Case of Nigerian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(4), pages 787-810, April.
    11. Maria Berrittella & Andrea Bigano & Roberto Roson & Richard S.J. Tol, 2004. "A General Equilibrium Analysis Of Climate Change Impacts On Tourism," Working Papers FNU-49, Research unit Sustainability and Global Change, Hamburg University, revised Nov 2004.
    12. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 9916, Department of Economics, University of Sussex.
    13. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    14. Sam Fankhauser, 2017. "Adaptation to Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 209-230, October.
    15. Bigano, Andrea & Bosello, Francesco & Roson, Roberto & Tol, Richard S.J., 2006. "Economy-Wide Estimates of the Implications of Climate Change: A Joint Analysis for Sea Level Rise and Tourism," Climate Change Modelling and Policy Working Papers 12022, Fondazione Eni Enrico Mattei (FEEM).
    16. Safarzyńska, Karolina & Brouwer, Roy & Hofkes, Marjan, 2013. "Evolutionary modelling of the macro-economic impacts of catastrophic flood events," Ecological Economics, Elsevier, vol. 88(C), pages 108-118.
    17. Ramiro Parrado & Francesco Bosello & Elisa Delpiazzo & Jochen Hinkel & Daniel Lincke & Sally Brown, 2020. "Fiscal effects and the potential implications on economic growth of sea-level rise impacts and coastal zone protection," Climatic Change, Springer, vol. 160(2), pages 283-302, May.
    18. Steven A. McAlpine & Jeremy R. Porter, 2018. "Estimating Recent Local Impacts of Sea-Level Rise on Current Real-Estate Losses: A Housing Market Case Study in Miami-Dade, Florida," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(6), pages 871-895, December.
    19. Xinyu Fu & Jie Song, 2017. "Assessing the Economic Costs of Sea Level Rise and Benefits of Coastal Protection: A Spatiotemporal Approach," Sustainability, MDPI, vol. 9(8), pages 1-14, August.
    20. Roberto Roson & Francesco Bosello, 2007. "Estimating a Climate Change Damage Function through General Equilibrium Modeling," Working Papers 2007_08, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:137:y:2016:i:1:d:10.1007_s10584-016-1675-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.