IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v117y2013i4p783-794.html
   My bibliography  Save this article

The effects of adaptation and mitigation on coastal flood impacts during the 21st century. An application of the DIVA and IMAGE models

Author

Listed:
  • Jochen Hinkel
  • Detlef Vuuren
  • Robert Nicholls
  • Richard Klein

Abstract

This paper studies the effects of mitigation and adaptation on coastal flood impacts. We focus on a scenario that stabilizes concentrations at 450 ppm-CO 2 -eq leading to 42 cm of global mean sea-level rise in 1995–2100 (GMSLR) and an unmitigated one leading to 63 cm of GMSLR. We also consider sensitivity scenarios reflecting increased tropical cyclone activity and a GMSLR of 126 cm. The only adaptation considered is upgrading and maintaining dikes. Under the unmitigated scenario and without adaptation, the number of people flooded reaches 168 million per year in 2100. Mitigation reduces this number by factor 1.4, adaptation by factor 461 and both options together by factor 540. The global annual flood cost (including dike upgrade cost, maintenance cost and residual damage cost) reaches US$ 210 billion per year in 2100 under the unmitigated scenario without adaptation. Mitigation reduces this number by factor 1.3, adaptation by factor 5.2 and both options together by factor 7.8. When assuming adaptation, the global annual flood cost relative to GDP falls throughout the century from about 0.06 % to 0.01–0.03 % under all scenarios including the sensitivity ones. From this perspective, adaptation to coastal flood impacts is meaningful to be widely applied irrespective of the level of mitigation. From the perspective of a some less-wealthy and small island countries, however, annual flood cost can amount to several percent of national GDP and mitigation can lower these costs significantly. We conclude that adaptation and mitigation are complimentary policies in coastal areas. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Jochen Hinkel & Detlef Vuuren & Robert Nicholls & Richard Klein, 2013. "The effects of adaptation and mitigation on coastal flood impacts during the 21st century. An application of the DIVA and IMAGE models," Climatic Change, Springer, vol. 117(4), pages 783-794, April.
  • Handle: RePEc:spr:climat:v:117:y:2013:i:4:p:783-794
    DOI: 10.1007/s10584-012-0564-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0564-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0564-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Tol, 2007. "The double trade-off between adaptation and mitigation for sea level rise: an application of FUND," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 741-753, June.
    2. S Fankhauser, 1995. "Protection versus Retreat: The Economic Costs of Sea-Level Rise," Environment and Planning A, , vol. 27(2), pages 299-319, February.
    3. Hallegatte, Stéphane & Ghil, Michael, 2008. "Natural disasters impacting a macroeconomic model with endogenous dynamics," Ecological Economics, Elsevier, vol. 68(1-2), pages 582-592, December.
    4. Hallegatte, Stephane & Hourcade, Jean-Charles & Dumas, Patrice, 2007. "Why economic dynamics matter in assessing climate change damages: Illustration on extreme events," Ecological Economics, Elsevier, vol. 62(2), pages 330-340, April.
    5. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    6. Neufeldt,Henry, 2009. "Making Climate Change Work for Us," Cambridge Books, Cambridge University Press, number 9780521119412 edited by Hulme,Mike.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yves Hategekimana & Lijun Yu & Yueping Nie & Jianfeng Zhu & Fang Liu & Fei Guo, 2018. "Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1137-1153, June.
    2. Delavane B. Diaz, 2016. "Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM)," Climatic Change, Springer, vol. 137(1), pages 143-156, July.
    3. Oleg Smirnov & Minghua Zhang & Tingyin Xiao & John Orbell & Amy Lobben & Josef Gordon, 2016. "The relative importance of climate change and population growth for exposure to future extreme droughts," Climatic Change, Springer, vol. 138(1), pages 41-53, September.
    4. Michael P. Cameron, 2017. "Climate Change, Internal Migration and the Future Spatial Distribution of Population: A Case Study of New Zealand," Working Papers in Economics 17/03, University of Waikato.
    5. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    6. Ramiro Parrado & Francesco Bosello & Elisa Delpiazzo & Jochen Hinkel & Daniel Lincke & Sally Brown, 2020. "Fiscal effects and the potential implications on economic growth of sea-level rise impacts and coastal zone protection," Climatic Change, Springer, vol. 160(2), pages 283-302, May.
    7. Chi-Hsiang Wang & Yong Khoo & Xiaoming Wang, 2015. "Adaptation benefits and costs of raising coastal buildings under storm-tide inundation in South East Queensland, Australia," Climatic Change, Springer, vol. 132(4), pages 545-558, October.
    8. Zhanna A. Mingaleva, 2020. "Institutional Features of International Financing for Climate Change Adaptation Programs," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 4, pages 10-25, August.
    9. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    10. Axel Creach & Emilio Bastidas-Arteaga & Sophie Pardo & Denis Mercier, 2019. "Adaptation of Residential Buildings to Coastal Floods: Strategies, Costs and Efficiency," Post-Print hal-04467886, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bosello, Francesco & De Cian, Enrica, 2014. "Climate change, sea level rise, and coastal disasters. A review of modeling practices," Energy Economics, Elsevier, vol. 46(C), pages 593-605.
    2. David Nortes Martínez & Frédéric Grelot & Pauline Bremond & Stefano Farolfi & Juliette Rouchier, 2021. "Are interactions important in estimating flood damage to economic entities? The case of wine-making in France," Post-Print hal-03609616, HAL.
    3. Nicola Ranger & Stéphane Hallegatte & Sumana Bhattacharya & Murthy Bachu & Satya Priya & K. Dhore & Farhat Rafique & P. Mathur & Nicolas Naville & Fanny Henriet & Celine Herweijer & Sanjib Pohit & Jan, 2011. "An assessment of the potential impact of climate change on flood risk in Mumbai," Climatic Change, Springer, vol. 104(1), pages 139-167, January.
    4. Stéphane Hallegatte & Valentin Przyluski, 2010. "The Economics of Natural Disasters," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(02), pages 14-24, July.
    5. Eduardo Cavallo & Ilan Noy, 2009. "The Economics of Natural Disasters: A Survey," Research Department Publications 4649, Inter-American Development Bank, Research Department.
    6. Hallegatte, Stephane, 2012. "Modeling the roles of heterogeneity, substitution, and inventories in the assessment of natural disaster economic costs," Policy Research Working Paper Series 6047, The World Bank.
    7. Wenzel, Lars & Wolf, André, 2013. "Protection against major catastrophes: An economic perspective," HWWI Research Papers 137, Hamburg Institute of International Economics (HWWI).
    8. Hallegatte,Stephane & Jooste,Charl & Mcisaac,Florent John, 2022. "Macroeconomic Consequences of Natural Disasters : A Modeling Proposal and Application to Floodsand Earthquakes in Turkey," Policy Research Working Paper Series 9943, The World Bank.
    9. K. Jenkins, 2013. "Indirect economic losses of drought under future projections of climate change: a case study for Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1967-1986, December.
    10. Henriet, Fanny & Hallegatte, Stephane, 2008. "Assessing the Consequences of Natural Disasters on Production Networks: A Disaggregated Approach," Coalition Theory Network Working Papers 46657, Fondazione Eni Enrico Mattei (FEEM).
    11. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Christian L. E. Franzke, 2017. "Impacts of a Changing Climate on Economic Damages and Insurance," Economics of Disasters and Climate Change, Springer, vol. 1(1), pages 95-110, June.
    13. Alex Bowen & Sarah Cochrane & Samuel Fankhauser, 2012. "Climate change, adaptation and economic growth," Climatic Change, Springer, vol. 113(2), pages 95-106, July.
    14. Hallegatte,Stephane & Bangalore,Mook & Jouanjean,Marie Agnes, 2016. "Higher losses and slower development in the absence of disaster risk management investments," Policy Research Working Paper Series 7632, The World Bank.
    15. Gregory, Richard P., 2021. "Climate disasters, carbon dioxide, and financial fundamentals," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 45-58.
    16. Stéphane Hallegatte & Valentin Przyluski, 2010. "The Economics of Natural Disasters," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(2), pages 14-24, July.
    17. Naqvi, Asjad, 2017. "Deep Impact: Geo-Simulations as a Policy Toolkit for Natural Disasters," World Development, Elsevier, vol. 99(C), pages 395-418.
    18. Safarzyńska, Karolina & Brouwer, Roy & Hofkes, Marjan, 2013. "Evolutionary modelling of the macro-economic impacts of catastrophic flood events," Ecological Economics, Elsevier, vol. 88(C), pages 108-118.
    19. Asjad Naqvi & Franziska Gaupp & Stefan Hochrainer-Stigler, 2020. "The risk and consequences of multiple breadbasket failures: an integrated copula and multilayer agent-based modeling approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 727-754, September.
    20. M. Ghil & Pascal Yiou & Stéphane Hallegatte & B. D. Malamud & P. Naveau & A. Soloviev & P. Friederichs & V. Keilis-Borok & D. Kondrashov & V. Kossobokov & O. Mestre & C. Nicolis & H. W. Rust & P. Sheb, 2011. "Extreme events: dynamics, statistics and prediction," Post-Print hal-00716514, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:117:y:2013:i:4:p:783-794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.