IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v103y2020i2d10.1007_s11069-020-04096-4.html
   My bibliography  Save this article

Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland

Author

Listed:
  • Ming Li

    (University of Maryland Center for Environmental Science)

  • Fan Zhang

    (University of Maryland Center for Environmental Science)

  • Samuel Barnes

    (Salisbury University)

  • Xiaohong Wang

    (Salisbury University)

Abstract

Hurricane Isabel (2003) generated record flooding around Chesapeake Bay and caused extensive damage in rural Eastern Shore of Maryland and metropolitan cities like Baltimore. Regional atmosphere–ocean models are used to investigate the storm surge and coastal inundation that might be produced by a similar storm under the warmer ocean temperature and higher sea level projected for the future climate. Warming causes the storm to intensify, with the minimum sea level pressure decreasing from 955 mb during Isabel to ~ 950 mb in 2050 and ~ 940 mb in 2100. The stronger storm and higher mean sea level amplify the peak water level by ~ 0.5 m in 2050 and ~ 1.2 m in 2100. The total inundated area over Chesapeake Bay expands by 26% in 2050 and 47–62% in 2100. Over the rural Dorchester County, the inundated area shows moderate expansion in the future climate but the average inundation depth is 30% higher in 2050 and 50–70% higher in 2100. The number of houses flooded increases from 1420 during Hurricane Isabel to 1850/2190 in 2100 under the climate change scenario representative concentration pathway (RCP) 4.5/8.5. The inundated area in Baltimore is 2.2 km2 during Hurricane Isabel, expands to 5.1 km2 in 2050, and reaches 8.1/9.1 km2 in 2100 under RCP 4.5/8.5. The estimated flood damage to Baltimore increases from $29 million in 2003 to $98/100 million in 2050 and $150/162 million in 2100 under the median projection of RCP 4.5/8.5. These estimates are subjected to uncertainty due to different climate change scenarios and different climate model projections.

Suggested Citation

  • Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
  • Handle: RePEc:spr:nathaz:v:103:y:2020:i:2:d:10.1007_s11069-020-04096-4
    DOI: 10.1007/s11069-020-04096-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04096-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04096-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asbury H. Sallenger & Kara S. Doran & Peter A. Howd, 2012. "Hotspot of accelerated sea-level rise on the Atlantic coast of North America," Nature Climate Change, Nature, vol. 2(12), pages 884-888, December.
    2. Mathew E. Hauer & Jason M. Evans & Deepak R. Mishra, 2016. "Millions projected to be at risk from sea-level rise in the continental United States," Nature Climate Change, Nature, vol. 6(7), pages 691-695, July.
    3. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    4. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    5. Andrew Condon & Y. Peter Sheng, 2012. "Evaluation of coastal inundation hazard for present and future climates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 345-373, June.
    6. Robert M. DeConto & David Pollard, 2016. "Contribution of Antarctica to past and future sea-level rise," Nature, Nature, vol. 531(7596), pages 591-597, March.
    7. Delavane B. Diaz, 2016. "Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM)," Climatic Change, Springer, vol. 137(1), pages 143-156, July.
    8. Catia M. Domingues & John A. Church & Neil J. White & Peter J. Gleckler & Susan E. Wijffels & Paul M. Barker & Jeff R. Dunn, 2008. "Improved estimates of upper-ocean warming and multi-decadal sea-level rise," Nature, Nature, vol. 453(7198), pages 1090-1093, June.
    9. Jan Huizinga & Hans de Moel & Wojciech Szewczyk, 2017. "Global flood depth-damage functions: Methodology and the database with guidelines," JRC Research Reports JRC105688, Joint Research Centre.
    10. James Neumann & Kerry Emanuel & Sai Ravela & Lindsay Ludwig & Paul Kirshen & Kirk Bosma & Jeremy Martinich, 2015. "Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy," Climatic Change, Springer, vol. 129(1), pages 337-349, March.
    11. Dylan E McNamara & Sathya Gopalakrishnan & Martin D Smith & A Brad Murray, 2015. "Climate Adaptation and Policy-Induced Inflation of Coastal Property Value," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-12, March.
    12. James Neumann & Daniel Hudgens & John Herter & Jeremy Martinich, 2011. "The economics of adaptation along developed coastlines," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 89-98, January.
    13. Carling C. Hay & Eric Morrow & Robert E. Kopp & Jerry X. Mitrovica, 2015. "Probabilistic reanalysis of twentieth-century sea-level rise," Nature, Nature, vol. 517(7535), pages 481-484, January.
    14. Steven A. McAlpine & Jeremy R. Porter, 2018. "Estimating Recent Local Impacts of Sea-Level Rise on Current Real-Estate Losses: A Housing Market Case Study in Miami-Dade, Florida," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(6), pages 871-895, December.
    15. K. Mcinnes & K. Walsh & G. Hubbert & T. Beer, 2003. "Impact of Sea-level Rise and Storm Surges on a Coastal Community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(2), pages 187-207, October.
    16. Gabriele Villarini & Gabriel A. Vecchi, 2012. "Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models," Nature Climate Change, Nature, vol. 2(8), pages 604-607, August.
    17. Zhaoqing Yang & Taiping Wang & Ruby Leung & Kathy Hibbard & Tony Janetos & Ian Kraucunas & Jennie Rice & Benjamin Preston & Tom Wilbanks, 2014. "A modeling study of coastal inundation induced by storm surge, sea-level rise, and subsidence in the Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1771-1794, April.
    18. Scott Kulp & Benjamin H. Strauss, 2017. "Rapid escalation of coastal flood exposure in US municipalities from sea level rise," Climatic Change, Springer, vol. 142(3), pages 477-489, June.
    19. Mir Mousavi & Jennifer Irish & Ashley Frey & Francisco Olivera & Billy Edge, 2011. "Global warming and hurricanes: the potential impact of hurricane intensification and sea level rise on coastal flooding," Climatic Change, Springer, vol. 104(3), pages 575-597, February.
    20. Ning Lin & Kerry Emanuel & Michael Oppenheimer & Erik Vanmarcke, 2012. "Physically based assessment of hurricane surge threat under climate change," Nature Climate Change, Nature, vol. 2(6), pages 462-467, June.
    21. Dinan, Terry, 2017. "Projected Increases in Hurricane Damage in the United States: The Role of Climate Change and Coastal Development," Ecological Economics, Elsevier, vol. 138(C), pages 186-198.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Jin & U. Rashid Sumaila & Kedong Yin, 2020. "Direct and Indirect Loss Evaluation of Storm Surge Disaster Based on Static and Dynamic Input-Output Models," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    2. Tassadit Kourat & Dalila Smadhi & Brahim Mouhouche & Nerdjes Gourari & M. G. Mostofa Amin & Christopher Robin Bryant, 2021. "Assessment of future climate change impact on rainfed wheat yield in the semi-arid Eastern High Plain of Algeria using a crop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2175-2203, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    2. Molinaroli, Emanuela & Guerzoni, Stefano & Suman, Daniel, 2018. "Adaptations to Sea Level Rise: A Tale of Two Cities – Venice and Miami," MarXiv 73a25, Center for Open Science.
    3. Yan Fang & Jie Yin & Bihu Wu, 2016. "Flooding risk assessment of coastal tourist attractions affected by sea level rise and storm surge: a case study in Zhejiang Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 611-624, October.
    4. Tina Dura & Andra J. Garner & Robert Weiss & Robert E. Kopp & Simon E. Engelhart & Robert C. Witter & Richard W. Briggs & Charles S. Mueller & Alan R. Nelson & Benjamin P. Horton, 2021. "Changing impacts of Alaska-Aleutian subduction zone tsunamis in California under future sea-level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    6. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    7. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    8. David Rodziewicz & Christopher J. Amante & Jacob Dice & Eugene Wahl, 2022. "Housing market impairment from future sea-level rise inundation," Environment Systems and Decisions, Springer, vol. 42(4), pages 637-656, December.
    9. R. Dean Hardy & Bryan L. Nuse, 2016. "Global sea-level rise: weighing country responsibility and risk," Climatic Change, Springer, vol. 137(3), pages 333-345, August.
    10. Keqi Zhang & Yuepeng Li & Huiqing Liu & Hongzhou Xu & Jian Shen, 2013. "Comparison of three methods for estimating the sea level rise effect on storm surge flooding," Climatic Change, Springer, vol. 118(2), pages 487-500, May.
    11. Ramiro Parrado & Francesco Bosello & Elisa Delpiazzo & Jochen Hinkel & Daniel Lincke & Sally Brown, 2020. "Fiscal effects and the potential implications on economic growth of sea-level rise impacts and coastal zone protection," Climatic Change, Springer, vol. 160(2), pages 283-302, May.
    12. Christopher J. Amante & Jacob Dice & David Rodziewicz & Eugene Wahl, 2020. "Housing Market Value Impairment from Future Sea-level Rise Inundation," Research Working Paper RWP 20-05, Federal Reserve Bank of Kansas City.
    13. Hirte, Georg & Nitzsche, Eric & Tscharaktschiew, Stefan, 2018. "Optimal adaptation in cities," Land Use Policy, Elsevier, vol. 73(C), pages 147-169.
    14. Makoto Tamura & Naoko Kumano & Mizuki Yotsukuri & Hiromune Yokoki, 2019. "Global assessment of the effectiveness of adaptation in coastal areas based on RCP/SSP scenarios," Climatic Change, Springer, vol. 152(3), pages 363-377, March.
    15. Paul Chinowsky & Jacob Helman, 2021. "Protecting Infrastructure and Public Buildings against Sea Level Rise and Storm Surge," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    16. Mathew E. Hauer & Dean Hardy & Scott A. Kulp & Valerie Mueller & David J. Wrathall & Peter U. Clark, 2021. "Assessing population exposure to coastal flooding due to sea level rise," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    17. Steven A. McAlpine & Jeremy R. Porter, 2018. "Estimating Recent Local Impacts of Sea-Level Rise on Current Real-Estate Losses: A Housing Market Case Study in Miami-Dade, Florida," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(6), pages 871-895, December.
    18. Borja G Reguero & Michael W Beck & David N Bresch & Juliano Calil & Imen Meliane, 2018. "Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-24, April.
    19. Parton, Lee C. & Dundas, Steven J., 2020. "Fall in the sea, eventually? A green paradox in climate adaptation for coastal housing markets," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    20. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:103:y:2020:i:2:d:10.1007_s11069-020-04096-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.