IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0192132.html
   My bibliography  Save this article

Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States

Author

Listed:
  • Borja G Reguero
  • Michael W Beck
  • David N Bresch
  • Juliano Calil
  • Imen Meliane

Abstract

Coastal risks are increasing from both development and climate change. Interest is growing in the protective role that coastal nature-based measures (or green infrastructure), such as reefs and wetlands, can play in adapting to these risks. However, a lack of quantitative information on their relative costs and benefits is one principal factor limiting their use more broadly. Here, we apply a quantitative risk assessment framework to assess coastal flood risk (from climate change and economic exposure growth) across the United States Gulf of Mexico coast to compare the cost effectiveness of different adaptation measures. These include nature-based (e.g. oyster reef restoration), structural or grey (e.g., seawalls) and policy measures (e.g. home elevation). We first find that coastal development will be a critical driver of risk, particularly for major disasters, but climate change will cause more recurrent losses through changes in storms and relative sea level rise. By 2030, flooding will cost $134–176.6 billion (for different economic growth scenarios), but as the effects of climate change, land subsidence and concentration of assets in the coastal zone increase, annualized risk will more than double by 2050 with respect to 2030. However, from the portfolio we studied, the set of cost-effective adaptation measures (with benefit to cost ratios above 1) could prevent up to $57–101 billion in losses, which represents 42.8–57.2% of the total risk. Nature-based adaptation options could avert more than $50 billion of these costs, and do so cost effectively with average benefit to cost ratios above 3.5. Wetland and oyster reef restoration are found to be particularly cost-effective. This study demonstrates that the cost effectiveness of nature-based, grey and policy measures can be compared quantitatively with one another, and that the cost effectiveness of adaptation becomes more attractive as climate change and coastal development intensifies in the future. It also shows that investments in nature-based adaptation could meet multiple objectives for environmental restoration, adaptation and flood risk reduction.

Suggested Citation

  • Borja G Reguero & Michael W Beck & David N Bresch & Juliano Calil & Imen Meliane, 2018. "Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-24, April.
  • Handle: RePEc:plo:pone00:0192132
    DOI: 10.1371/journal.pone.0192132
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192132
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0192132&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0192132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mathew E. Hauer & Jason M. Evans & Deepak R. Mishra, 2016. "Millions projected to be at risk from sea-level rise in the continental United States," Nature Climate Change, Nature, vol. 6(7), pages 691-695, July.
    2. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    3. Rachel James & Friederike Otto & Hannah Parker & Emily Boyd & Rosalind Cornforth & Daniel Mitchell & Myles Allen, 2014. "Characterizing loss and damage from climate change," Nature Climate Change, Nature, vol. 4(11), pages 938-939, November.
    4. So-Min Cheong & Brian Silliman & Poh Poh Wong & Bregje van Wesenbeeck & Choong-Ki Kim & Greg Guannel, 2013. "Coastal adaptation with ecological engineering," Nature Climate Change, Nature, vol. 3(9), pages 787-791, September.
    5. P. Peduzzi & B. Chatenoux & H. Dao & A. De Bono & C. Herold & J. Kossin & F. Mouton & O. Nordbeck, 2012. "Global trends in tropical cyclone risk," Nature Climate Change, Nature, vol. 2(4), pages 289-294, April.
    6. Karp, Larry, 2005. "Global warming and hyperbolic discounting," Journal of Public Economics, Elsevier, vol. 89(2-3), pages 261-282, February.
    7. Jonathan D. Woodruff & Jennifer L. Irish & Suzana J. Camargo, 2013. "Coastal flooding by tropical cyclones and sea-level rise," Nature, Nature, vol. 504(7478), pages 44-52, December.
    8. Ghermandi, Andrea & Nunes, Paulo A.L.D., 2013. "A global map of coastal recreation values: Results from a spatially explicit meta-analysis," Ecological Economics, Elsevier, vol. 86(C), pages 1-15.
    9. Robert Mendelsohn, 2008. "Is the Stern Review an Economic Analysis?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(1), pages 45-60, Winter.
    10. Stijn Temmerman & Patrick Meire & Tjeerd J. Bouma & Peter M. J. Herman & Tom Ysebaert & Huib J. De Vriend, 2013. "Ecosystem-based coastal defence in the face of global change," Nature, Nature, vol. 504(7478), pages 79-83, December.
    11. Barbier, Edward B., 2015. "Valuing the storm protection service of estuarine and coastal ecosystems," Ecosystem Services, Elsevier, vol. 11(C), pages 32-38.
    12. Christine C Shepard & Caitlin M Crain & Michael W Beck, 2011. "The Protective Role of Coastal Marshes: A Systematic Review and Meta-analysis," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-11, November.
    13. Edwards, P.E.T. & Sutton-Grier, A.E. & Coyle, G.E., 2013. "Investing in nature: Restoring coastal habitat blue infrastructure and green job creation," Marine Policy, Elsevier, vol. 38(C), pages 65-71.
    14. Donald Resio & Jennifer Irish & Mary Cialone, 2009. "A surge response function approach to coastal hazard assessment – part 1: basic concepts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 163-182, October.
    15. Kevin J.E. Walsh & John L. McBride & Philip J. Klotzbach & Sethurathinam Balachandran & Suzana J. Camargo & Greg Holland & Thomas R. Knutson & James P. Kossin & Tsz‐cheung Lee & Adam Sobel & Masato Su, 2016. "Tropical cyclones and climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 7(1), pages 65-89, January.
    16. Antonio B. Rodriguez & F. Joel Fodrie & Justin T. Ridge & Niels L. Lindquist & Ethan J. Theuerkauf & Sara E. Coleman & Jonathan H. Grabowski & Michelle C. Brodeur & Rachel K. Gittman & Danielle A. Kel, 2014. "Oyster reefs can outpace sea-level rise," Nature Climate Change, Nature, vol. 4(6), pages 493-497, June.
    17. Filippo Ferrario & Michael W. Beck & Curt D. Storlazzi & Fiorenza Micheli & Christine C. Shepard & Laura Airoldi, 2014. "The effectiveness of coral reefs for coastal hazard risk reduction and adaptation," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    18. Ning Lin & Kerry Emanuel & Michael Oppenheimer & Erik Vanmarcke, 2012. "Physically based assessment of hurricane surge threat under climate change," Nature Climate Change, Nature, vol. 2(6), pages 462-467, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven B. Scyphers & Michael W. Beck & Kelsi L. Furman & Judy Haner & Lauren I. Josephs & Rebecca Lynskey & Andrew G. Keeler & Craig E. Landry & Sean P. Powers & Bret M. Webb & Jonathan H. Grabowski, 2019. "A Waterfront View of Coastal Hazards: Contextualizing Relationships among Geographic Exposure, Shoreline Type, and Hazard Concerns among Coastal Residents," Sustainability, MDPI, vol. 11(23), pages 1-11, November.
    2. Denise E. DeLorme & Sonia H. Stephens & Renee C. Collini, 2022. "Coastal hazard mitigation considerations: perspectives from northern Gulf of Mexico coastal professionals and decision-makers," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(4), pages 669-681, December.
    3. Takahiro Tsuge & Yasushi Shoji & Koichi Kuriyama & Ayumi Onuma, 2022. "Using a Choice Experiment to Understand Preferences for Disaster Risk Reduction with Uncertainty: A Case Study in Japan," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    4. Elena Di Pirro & Peter Roebeling & Lorenzo Sallustio & Marco Marchetti & Bruno Lasserre, 2023. "Cost-Effectiveness of Nature-Based Solutions under Different Implementation Scenarios: A National Perspective for Italian Urban Areas," Land, MDPI, vol. 12(3), pages 1-19, March.
    5. Woodruff, Sierra & Bae, Jinhyun & Sohn, Wonmin & Newman, Galen & Tran, Tho & Lee, Jessica & Wilkins, Chandler & Van Zandt, Shannon & Ndubisi, Forster, 2022. "Planning, development pressure, and change in green infrastructure quantity and configuration in coastal Texas," Land Use Policy, Elsevier, vol. 114(C).
    6. Christopher G. Siverd & Scott C. Hagen & Matthew V. Bilskie & DeWitt H. Braud & Robert R. Twilley, 2020. "Quantifying storm surge and risk reduction costs: a case study for Lafitte, Louisiana," Climatic Change, Springer, vol. 161(1), pages 201-223, July.
    7. Ferreira, Susana, 2024. "Extreme Weather Events and Climate Change: Economic Impacts and Adaptation Policies," IZA Discussion Papers 16715, Institute of Labor Economics (IZA).
    8. Pham Thi Oanh & Makoto Tamura & Naoko Kumano & Quang Van Nguyen, 2020. "Cost-Benefit Analysis of Mixing Gray and Green Infrastructures to Adapt to Sea Level Rise in the Vietnamese Mekong River Delta," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    9. Si Ha & Hirokazu Tatano & Nobuhito Mori & Toshio Fujimi & Xinyu Jiang, 2021. "Cost–benefit analysis of adaptation to storm surge due to climate change in Osaka Bay, Japan," Climatic Change, Springer, vol. 169(3), pages 1-20, December.
    10. Alexander Boest-Petersen & Piotr Michalak & Jamal Jokar Arsanjani, 2021. "Impact Assessment Analysis of Sea Level Rise in Denmark: A Case Study of Falster Island, Guldborgsund," Sustainability, MDPI, vol. 13(13), pages 1-26, July.
    11. Mali‘o Kodis & Marci Bortman & Sarah Newkirk, 2021. "Strategic retreat for resilient and equitable climate adaptation: the roles for conservation organizations," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(3), pages 493-502, September.
    12. Hagedoorn, Liselotte C. & Koetse, Mark J. & van Beukering, Pieter J.H. & Brander, Luke M., 2021. "Reducing the finance gap for nature-based solutions with time contributions," Ecosystem Services, Elsevier, vol. 52(C).
    13. Julie Rozenberg & Marianne Fay, 2019. "Beyond the Gap," World Bank Publications - Books, The World Bank Group, number 31291, December.
    14. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    15. Octavio Pérez-Maqueo & M. Luisa Martínez & Flor C. Sánchez-Barradas & Melanie Kolb, 2018. "Assessing Nature-Based Coastal Protection against Disasters Derived from Extreme Hydrometeorological Events in Mexico," Sustainability, MDPI, vol. 10(5), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    2. Arun Rana & Qinhan Zhu & Annette Detken & Karina Whalley & Christelle Castet, 2022. "Strengthening climate-resilient development and transformation in Viet Nam," Climatic Change, Springer, vol. 170(1), pages 1-23, January.
    3. Siddharth Narayan & Michael W Beck & Borja G Reguero & Iñigo J Losada & Bregje van Wesenbeeck & Nigel Pontee & James N Sanchirico & Jane Carter Ingram & Glenn-Marie Lange & Kelly A Burks-Copes, 2016. "The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-17, May.
    4. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    5. Strain, E.M.A. & Kompas, T. & Boxshall, A. & Kelvin, J. & Swearer, S. & Morris, R.L., 2022. "Assessing the coastal protection services of natural mangrove forests and artificial rock revetments," Ecosystem Services, Elsevier, vol. 55(C).
    6. Bregje K. van Wesenbeeck & Wiebe de Boer & Siddharth Narayan & Wouter R. L. van der Star & Mindert B. de Vries, 2017. "Coastal and riverine ecosystems as adaptive flood defenses under a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1087-1094, October.
    7. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    8. Yui Omori, 2021. "Preference Heterogeneity of Coastal Gray, Green, and Hybrid Infrastructure against Sea-Level Rise: A Choice Experiment Application in Japan," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    9. Jantsje Loon-Steensma, 2015. "Salt marshes to adapt the flood defences along the Dutch Wadden Sea coast," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 929-948, August.
    10. H. M. Tuihedur Rahman & Kate Sherren & Danika van Proosdij, 2019. "Institutional Innovation for Nature-Based Coastal Adaptation: Lessons from Salt Marsh Restoration in Nova Scotia, Canada," Sustainability, MDPI, vol. 11(23), pages 1-26, November.
    11. Manik Mahapatra & R. Ratheesh & A. S. Rajawat, 2017. "Storm surge vulnerability assessment of Saurashtra coast, Gujarat, using GIS techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 821-831, March.
    12. Nick Taylor & Jennifer Irish & Ikpoto Udoh & Matthew Bilskie & Scott Hagen, 2015. "Development and uncertainty quantification of hurricane surge response functions for hazard assessment in coastal bays," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1103-1123, June.
    13. Théophile Bongarts Lebbe & Hélène Rey-Valette & Éric Chaumillon & Guigone Camus & Rafael Almar & Anny Cazenave & Joachim Claudet & Nicolas Rocle & Catherine Meur-Ferec & Frédérique Viard & Denis Merci, 2021. "Designing coastal adaptation strategies to tackle sea level rise," Post-Print hal-03412421, HAL.
    14. Chengguang Lai & Xiaohong Chen & Zhaoli Wang & Haijun Yu & Xiaoyan Bai, 2020. "Flood Risk Assessment and Regionalization from Past and Future Perspectives at Basin Scale," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1399-1417, July.
    15. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    16. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    17. Ping Ai & Dingbo Yuan & Chuansheng Xiong, 2018. "Copula-Based Joint Probability Analysis of Compound Floods from Rainstorm and Typhoon Surge: A Case Study of Jiangsu Coastal Areas, China," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    18. Shao Sun & Zunya Wang & Chuanye Hu & Ge Gao, 2021. "Understanding Climate Hazard Patterns and Urban Adaptation Measures in China," Sustainability, MDPI, vol. 13(24), pages 1-12, December.
    19. Beck, Michael W. & Heck, Nadine & Narayan, Siddharth & Menéndez, Pelayo & Reguero, Borja G. & Bitterwolf, Stephan & Torres-Ortega, Saul & Lange, Glenn-Marie & Pfliegner, Kerstin & Pietsch McNulty, Va, 2022. "Return on investment for mangrove and reef flood protection," Ecosystem Services, Elsevier, vol. 56(C).
    20. Ariana E. Sutton-Grier & Rachel K. Gittman & Katie K. Arkema & Richard O. Bennett & Jeff Benoit & Seth Blitch & Kelly A. Burks-Copes & Allison Colden & Alyssa Dausman & Bryan M. DeAngelis & A. Randall, 2018. "Investing in Natural and Nature-Based Infrastructure: Building Better Along Our Coasts," Sustainability, MDPI, vol. 10(2), pages 1-11, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0192132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.