IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v129y2015i1p145-158.html
   My bibliography  Save this article

Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models

Author

Listed:
  • Belay Kassie
  • Senthold Asseng
  • Reimund Rotter
  • Huib Hengsdijk
  • Alex Ruane
  • Martin Ittersum

Abstract

Exploring adaptation strategies for different climate change scenarios to support agricultural production and food security is a major concern to vulnerable regions, including Ethiopia. This study assesses the potential impacts of climate change on maize yield and explores specific adaptation options under climate change scenarios for the Central Rift Valley of Ethiopia by mid-century. Impacts and adaptation options were evaluated using three General Circulation Models (GCMs) in combination with two Representative Concentration Pathways (RCPs) and two crop models. Results indicate that maize yield decreases on average by 20 % in 2050s relative to the baseline (1980–2009) due to climate change. A negative impact on yield is very likely, while the extent of impact is more uncertain. The share in uncertainties of impact projections was higher for the three GCMs than it was for the two RCPs and two crop models used in this study. Increasing nitrogen fertilization and use of irrigation were assessed as potentially effective adaptation options, which would offset negative impacts. However, the response of yields to increased fertilizer and irrigation will be less for climate change scenarios than under the baseline. Changes in planting dates also reduced negative impacts, while changing the maturity type of maize cultivars was not effective in most scenarios. The multi-model based analysis allowed estimating climate change impact and adaptation uncertainties, which can provide valuable insights and guidance for adaptation planning. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Belay Kassie & Senthold Asseng & Reimund Rotter & Huib Hengsdijk & Alex Ruane & Martin Ittersum, 2015. "Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models," Climatic Change, Springer, vol. 129(1), pages 145-158, March.
  • Handle: RePEc:spr:climat:v:129:y:2015:i:1:p:145-158
    DOI: 10.1007/s10584-014-1322-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1322-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1322-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thornton, Philip K. & Jones, Peter G. & Alagarswamy, Gopal & Andresen, Jeff & Herrero, Mario, 2010. "Adapting to climate change: Agricultural system and household impacts in East Africa," Agricultural Systems, Elsevier, vol. 103(2), pages 73-82, February.
    2. Getnet, Mezegebu & Hengsdijk, Huib & van Ittersum, Martin, 2014. "Disentangling the impacts of climate change, land use change and irrigation on the Central Rift Valley water system of Ethiopia," Agricultural Water Management, Elsevier, vol. 137(C), pages 104-115.
    3. Rotter, R. & van Keulen, H. & Jansen, M. J. W., 1997. "Variations in yield response to fertilizer application in the tropics: I. Quantifying risks and opportunities for smallholders based on crop growth simulation," Agricultural Systems, Elsevier, vol. 53(1), pages 41-68, January.
    4. Rotter, R. & van Keulen, H., 1997. "Variations in yield response to fertilizer application in the tropics: II. Risks and opportunities for smallholders cultivating maize on Kenya's arable land," Agricultural Systems, Elsevier, vol. 53(1), pages 69-95, January.
    5. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    6. Stephen Whitfield, 2013. "Uncertainty, ignorance and ambiguity in crop modelling for African agricultural adaptation," Climatic Change, Springer, vol. 120(1), pages 325-340, September.
    7. Turner, Neil C. & Rao, K.P.C., 2013. "Simulation analysis of factors affecting sorghum yield at selected sites in eastern and southern Africa, with emphasis on increasing temperatures," Agricultural Systems, Elsevier, vol. 121(C), pages 53-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    2. Li, Na & Yao, Ning & Li, Yi & Chen, Junqing & Liu, Deli & Biswas, Asim & Li, Linchao & Wang, Tianxue & Chen, Xinguo, 2021. "A meta-analysis of the possible impact of climate change on global cotton yield based on crop simulation approaches," Agricultural Systems, Elsevier, vol. 193(C).
    3. Zunfu Lv & Feifei Li & Guoquan Lu, 2020. "Adjusting sowing date and cultivar shift improve maize adaption to climate change in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 87-106, January.
    4. Van Touch & Robert John Martin & Fiona Scott & Annette Cowie & De Li Liu, 2017. "Climate change impacts on rainfed cropping production systems in the tropics and the case of smallholder farms in North-west Cambodia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(5), pages 1631-1647, October.
    5. A. Araya & P. V. V. Prasad & P. H. Gowda & M. Djanaguiraman & A. H. Kassa, 2020. "Potential impacts of climate change factors and agronomic adaptation strategies on wheat yields in central highlands of Ethiopia," Climatic Change, Springer, vol. 159(3), pages 461-479, April.
    6. Bin Wang & De Li Liu & Cathy Waters & Qiang Yu, 2018. "Quantifying sources of uncertainty in projected wheat yield changes under climate change in eastern Australia," Climatic Change, Springer, vol. 151(2), pages 259-273, November.
    7. Qi Zhang & Jiquan Zhang, 2016. "Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1323-1331, March.
    8. Huang, Mingxia & Wang, Jing & Wang, Bin & Liu, De Li & Feng, Puyu & Yu, Qiang & Pan, Xuebiao & Li, Siyi & Jiang, Tengcong, 2022. "Dominant sources of uncertainty in simulating maize adaptation under future climate scenarios in China," Agricultural Systems, Elsevier, vol. 199(C).
    9. Habtemariam, Lemlem Teklegiorgis & Abate Kassa, Getachew & Gandorfer, Markus, 2017. "Impact of climate change on farms in smallholder farming systems: Yield impacts, economic implications and distributional effects," Agricultural Systems, Elsevier, vol. 152(C), pages 58-66.
    10. Chenyao Yang & Helder Fraga & Wim Ieperen & Henrique Trindade & João A. Santos, 2019. "Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal," Climatic Change, Springer, vol. 154(1), pages 159-178, May.
    11. Ibrahim Sufiyan & M.K. Dahiru & Mohammed Alkali, 2022. "Geospatial Trend Analysis Of Rain-Fed And Irrigation Practices For Crops Yield Improvement In Kura And Minjibir, Kano Sate, Nigeria," Tropical Agrobiodiversity (TRAB), Zibeline International Publishing, vol. 3(1), pages 16-20, May.
    12. Ndlovu, P.N. & Thamaga-Chitja, J.M. & Ojo, T.O., 2021. "Factors influencing the level of vegetable value chain participation and implications on smallholder farmers in Swayimane KwaZulu-Natal," Land Use Policy, Elsevier, vol. 109(C).
    13. Sisay Belay Bedeke, 2023. "Climate change vulnerability and adaptation of crop producers in sub-Saharan Africa: a review on concepts, approaches and methods," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1017-1051, February.
    14. Getachew, Fikadu & Bayabil, Haimanote K. & Hoogenboom, Gerrit & Teshome, Fitsum T. & Zewdu, Eshetu, 2021. "Irrigation and shifting planting date as climate change adaptation strategies for sorghum," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Qaisar Saddique & Huanjie Cai & Jiatun Xu & Ali Ajaz & Jianqiang He & Qiang Yu & Yunfei Wang & Hui Chen & Muhammad Imran Khan & De Li Liu & Liang He, 2020. "Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1523-1543, December.
    16. Stefan Hochrainer-Stigler & Juraj Balkovič & Kadri Silm & Anna Timonina-Farkas, 2019. "Large scale extreme risk assessment using copulas: an application to drought events under climate change for Austria," Computational Management Science, Springer, vol. 16(4), pages 651-669, October.
    17. Adam M. Komarek & James Thurlow & Jawoo Koo & Alessandro De Pinto, 2019. "Economywide effects of climate‐smart agriculture in Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 50(6), pages 765-778, November.
    18. Qi Zhang & Jiquan Zhang, 2016. "Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1323-1331, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    2. Anika Reetsch & Kai Schwärzel & Christina Dornack & Shadrack Stephene & Karl-Heinz Feger, 2020. "Optimising Nutrient Cycles to Improve Food Security in Smallholder Farming Families—A Case Study from Banana-Coffee-Based Farming in the Kagera Region, NW Tanzania," Sustainability, MDPI, vol. 12(21), pages 1-34, November.
    3. Sally Brooks & Michael Loevinsohn, 2011. "Shaping agricultural innovation systems responsive to food insecurity and climate change," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 185-200, August.
    4. Webber, Heidi & Gaiser, Thomas & Ewert, Frank, 2014. "What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa?," Agricultural Systems, Elsevier, vol. 127(C), pages 161-177.
    5. Milgroom, J. & Giller, K.E., 2013. "Courting the rain: Rethinking seasonality and adaptation to recurrent drought in semi-arid southern Africa," Agricultural Systems, Elsevier, vol. 118(C), pages 91-104.
    6. Ignaciuk, A. & Maggio, G. & Mastrorillo, M. & Sitko, N., 2021. "Adapting to high temperatures: evidence on the impacts of sustainable agricultural practices in Uganda," ESA Working Papers 309364, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    7. Lazzaroni, S. & Bedi, A.S., 2014. "Weather variability and food consumption," ISS Working Papers - General Series 51272, International Institute of Social Studies of Erasmus University Rotterdam (ISS), The Hague.
    8. Kahsay, Goytom Abraha & Hansen, Lars Gårn, 2016. "The effect of climate change and adaptation policy on agricultural production in Eastern Africa," Ecological Economics, Elsevier, vol. 121(C), pages 54-64.
    9. Silvia Silvestri & Martin Macharia & Bellancile Uzayisenga, 2019. "Analysing the potential of plant clinics to boost crop protection in Rwanda through adoption of IPM: the case of maize and maize stem borers," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(2), pages 301-315, April.
    10. Batanai Sammie & Elvis Mupfiga & Liboster Mwadzingeni & Tavengwa Chitata & Raymond Mugandani, 2021. "A gendered lens to self-evaluated and actual climate change knowledge," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(1), pages 65-75, March.
    11. Stephen Whitfield, 2013. "Uncertainty, ignorance and ambiguity in crop modelling for African agricultural adaptation," Climatic Change, Springer, vol. 120(1), pages 325-340, September.
    12. Wichern, Jannike & Descheemaeker, Katrien & Giller, Ken E. & Ebanyat, Peter & Taulya, Godfrey & van Wijk, Mark T., 2019. "Vulnerability and adaptation options to climate change for rural livelihoods – A country-wide analysis for Uganda," Agricultural Systems, Elsevier, vol. 176(C).
    13. Abdoul G. Sam & Babatunde O. Abidoye & Sihle Mashaba, 2021. "Climate change and household welfare in sub-Saharan Africa: empirical evidence from Swaziland," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 439-455, April.
    14. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    15. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    16. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    17. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    18. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    19. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    20. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:129:y:2015:i:1:p:145-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.