IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v20y2012i4p559-581.html
   My bibliography  Save this article

A case study on the application of an approximated hypercube model to emergency medical systems management

Author

Listed:
  • Susana Baptista
  • Rui Oliveira

Abstract

This paper describes an application of the approximated hypercube model to Lisbon emergency medical services (EMS) management, namely for assessing alternative dispatching rules for assigning ambulances to emergency calls. The approximated hypercube (A-hypercube) is a queuing theory model that computes several performance measures such as average response time, server workloads or the probability of all servers being busy (loss probability). The assumptions of the extended model are Poisson customer arrivals, general service time (customer and server dependent) and a fixed preference assignment rule of servers to customers. The fact that dispatching rules are precisely a model parameter, turn this model into a valuable tool in the definition of efficient operating rules. In this paper, we propose new expressions for the computation of system performance measures during periods in which the emergency call arrival process is not stationary. Different dispatching rules are evaluated by comparing the system performance measures obtained from the extended A-hypercube model and a simulation model, using data collected from the Lisbon EMS Department. Copyright Springer-Verlag 2012

Suggested Citation

  • Susana Baptista & Rui Oliveira, 2012. "A case study on the application of an approximated hypercube model to emergency medical systems management," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 559-581, December.
  • Handle: RePEc:spr:cejnor:v:20:y:2012:i:4:p:559-581
    DOI: 10.1007/s10100-010-0187-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-010-0187-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-010-0187-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Venkateshan, Prahalad & Mathur, Kamlesh & Ballou, Ronald H., 2010. "Locating and staffing service centers under service level constraints," European Journal of Operational Research, Elsevier, vol. 201(1), pages 55-70, February.
    2. Armann Ingolfsson & Susan Budge & Erhan Erkut, 2008. "Optimal ambulance location with random delays and travel times," Health Care Management Science, Springer, vol. 11(3), pages 262-274, September.
    3. F C Mendonça & R Morabito, 2001. "Analysing emergency medical service ambulance deployment on a Brazilian highway using the hypercube model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 261-270, March.
    4. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.
    5. Richard C. Larson, 1975. "Approximating the Performance of Urban Emergency Service Systems," Operations Research, INFORMS, vol. 23(5), pages 845-868, October.
    6. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    7. Jeffrey Goldberg & Luis Paz, 1991. "Locating Emergency Vehicle Bases When Service Time Depends on Call Location," Transportation Science, INFORMS, vol. 25(4), pages 264-280, November.
    8. Susan Budge & Armann Ingolfsson & Erhan Erkut, 2009. "Technical Note---Approximating Vehicle Dispatch Probabilities for Emergency Service Systems with Location-Specific Service Times and Multiple Units per Location," Operations Research, INFORMS, vol. 57(1), pages 251-255, February.
    9. Grace M. Carter & Jan M. Chaiken & Edward Ignall, 1972. "Response Areas for Two Emergency Units," Operations Research, INFORMS, vol. 20(3), pages 571-594, June.
    10. Goldberg, Jeffrey & Dietrich, Robert & Ming Chen, Jen & Mitwasi, M. George & Valenzuela, Terry & Criss, Elizabeth, 1990. "Validating and applying a model for locating emergency medical vehicles in Tuczon, AZ," European Journal of Operational Research, Elsevier, vol. 49(3), pages 308-324, December.
    11. Repede, John F. & Bernardo, John J., 1994. "Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky," European Journal of Operational Research, Elsevier, vol. 75(3), pages 567-581, June.
    12. J. P. Jarvis, 1985. "Approximating the Equilibrium Behavior of Multi-Server Loss Systems," Management Science, INFORMS, vol. 31(2), pages 235-239, February.
    13. Saydam, Cem & Aytug, Haldun, 2003. "Accurate estimation of expected coverage: revisited," Socio-Economic Planning Sciences, Elsevier, vol. 37(1), pages 69-80, March.
    14. Jeffrey Goldberg & Ferenc Szidarovszky, 1991. "Methods for Solving Nonlinear Equations Used in Evaluating Emergency Vehicle Busy Probabilities," Operations Research, INFORMS, vol. 39(6), pages 903-916, December.
    15. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2009. "An optimization approach for ambulance location and the districting of the response segments on highways," European Journal of Operational Research, Elsevier, vol. 195(2), pages 528-542, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
    2. Josefa Mula & Marija Bogataj, 2021. "OR in the industrial engineering of Industry 4.0: experiences from the Iberian Peninsula mirrored in CJOR," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1163-1184, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    2. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
    3. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    4. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    5. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    6. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    7. Sun Hoon Kim & Young Hoon Lee, 2016. "Iterative optimization algorithm with parameter estimation for the ambulance location problem," Health Care Management Science, Springer, vol. 19(4), pages 362-382, December.
    8. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    9. Geroliminis, Nikolas & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2011. "A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network," European Journal of Operational Research, Elsevier, vol. 210(2), pages 287-300, April.
    10. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2009. "An optimization approach for ambulance location and the districting of the response segments on highways," European Journal of Operational Research, Elsevier, vol. 195(2), pages 528-542, June.
    11. Iannoni, Ana Paula & Chiyoshi, Fernando & Morabito, Reinaldo, 2015. "A spatially distributed queuing model considering dispatching policies with server reservation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 49-66.
    12. Iannoni, Ana P. & Morabito, Reinaldo, 2023. "A review on hypercube queuing model's extensions for practical applications," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    13. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    14. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    15. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    16. Sardar Ansari & Laura Albert McLay & Maria E. Mayorga, 2017. "A Maximum Expected Covering Problem for District Design," Transportation Science, INFORMS, vol. 51(1), pages 376-390, February.
    17. Rautenstrauss, Maximiliane & Martin, Layla & Minner, Stefan, 2023. "Ambulance dispatching during a pandemic: Tradeoffs of categorizing patients and allocating ambulances," European Journal of Operational Research, Elsevier, vol. 304(1), pages 239-254.
    18. de Souza, Regiane Máximo & Morabito, Reinaldo & Chiyoshi, Fernando Y. & Iannoni, Ana Paula, 2015. "Incorporating priorities for waiting customers in the hypercube queuing model with application to an emergency medical service system in Brazil," European Journal of Operational Research, Elsevier, vol. 242(1), pages 274-285.
    19. Hyunjin Lee & Taesik Lee, 2021. "Demand modelling for emergency medical service system with multiple casualties cases: k-inflated mixture regression model," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 1090-1115, December.
    20. Morabito, Reinaldo & Chiyoshi, Fernando & Galvão, Roberto D., 2008. "Non-homogeneous servers in emergency medical systems: Practical applications using the hypercube queueing model," Socio-Economic Planning Sciences, Elsevier, vol. 42(4), pages 255-270, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:20:y:2012:i:4:p:559-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.