IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v242y2015i1p274-285.html
   My bibliography  Save this article

Incorporating priorities for waiting customers in the hypercube queuing model with application to an emergency medical service system in Brazil

Author

Listed:
  • de Souza, Regiane Máximo
  • Morabito, Reinaldo
  • Chiyoshi, Fernando Y.
  • Iannoni, Ana Paula

Abstract

Emergency medical services (EMS) assist different classes of patients according to their medical seriousness. In this study, we extended the well-known hypercube model, based on the theory of spatially distributed queues, to analyze systems with multiple priority classes and a queue for waiting customers. Then, we analyzed the computational results obtained when applying this approach to a case study from an urban EMS in the city of Ribeirão Preto, Brazil. We also investigated some scenarios for this system studying different periods of the day and the impact of increasing the demands of the patient classes. The results showed that relevant performance measures can be obtained to analyze such a system by using the analytical model extended to deal with queuing priority. In particular, it can accurately evaluate the average response time for each class of emergency calls individually, paying particular attention to high priority calls.

Suggested Citation

  • de Souza, Regiane Máximo & Morabito, Reinaldo & Chiyoshi, Fernando Y. & Iannoni, Ana Paula, 2015. "Incorporating priorities for waiting customers in the hypercube queuing model with application to an emergency medical service system in Brazil," European Journal of Operational Research, Elsevier, vol. 242(1), pages 274-285.
  • Handle: RePEc:eee:ejores:v:242:y:2015:i:1:p:274-285
    DOI: 10.1016/j.ejor.2014.09.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714007954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.09.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. D. S. Taylor & J. G. C. Templeton, 1980. "Waiting Time In a Multi-Server Cutoff-Priority Queue, and Its Application to an Urban Ambulance Service," Operations Research, INFORMS, vol. 28(5), pages 1168-1188, October.
    2. Richard C. Larson, 1975. "Approximating the Performance of Urban Emergency Service Systems," Operations Research, INFORMS, vol. 23(5), pages 845-868, October.
    3. Kenneth R. Chelst & Ziv Barlach, 1981. "Multiple Unit Dispatches in Emergency Services: Models to Estimate System Performance," Management Science, INFORMS, vol. 27(12), pages 1390-1409, December.
    4. Iannoni, Ana Paula & Morabito, Reinaldo, 2007. "A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 755-771, November.
    5. Richard C. Larson & Mark A. Mcknew, 1982. "Police Patrol-Initiated Activities Within a Systems Queueing Model," Management Science, INFORMS, vol. 28(7), pages 759-774, July.
    6. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
    7. Armann Ingolfsson & Susan Budge & Erhan Erkut, 2008. "Optimal ambulance location with random delays and travel times," Health Care Management Science, Springer, vol. 11(3), pages 262-274, September.
    8. Goldberg, Jeffrey & Dietrich, Robert & Ming Chen, Jen & Mitwasi, M. George & Valenzuela, Terry & Criss, Elizabeth, 1990. "Validating and applying a model for locating emergency medical vehicles in Tuczon, AZ," European Journal of Operational Research, Elsevier, vol. 49(3), pages 308-324, December.
    9. J. P. Jarvis, 1985. "Approximating the Equilibrium Behavior of Multi-Server Loss Systems," Management Science, INFORMS, vol. 31(2), pages 235-239, February.
    10. Linda V. Green & Peter J. Kolesar, 2004. "ANNIVERSARY ARTICLE: Improving Emergency Responsiveness with Management Science," Management Science, INFORMS, vol. 50(8), pages 1001-1014, August.
    11. F C Mendonça & R Morabito, 2001. "Analysing emergency medical service ambulance deployment on a Brazilian highway using the hypercube model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 261-270, March.
    12. Song-Hee Kim & Ward Whitt, 2014. "Are Call Center and Hospital Arrivals Well Modeled by Nonhomogeneous Poisson Processes?," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 464-480, July.
    13. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2009. "An optimization approach for ambulance location and the districting of the response segments on highways," European Journal of Operational Research, Elsevier, vol. 195(2), pages 528-542, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iannoni, Ana Paula & Chiyoshi, Fernando & Morabito, Reinaldo, 2015. "A spatially distributed queuing model considering dispatching policies with server reservation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 49-66.
    2. Rautenstrauss, Maximiliane & Martin, Layla & Minner, Stefan, 2023. "Ambulance dispatching during a pandemic: Tradeoffs of categorizing patients and allocating ambulances," European Journal of Operational Research, Elsevier, vol. 304(1), pages 239-254.
    3. Akbar Karimi & Michel Gendreau & Vedat Verter, 2018. "Performance Approximation of Emergency Service Systems with Priorities and Partial Backups," Transportation Science, INFORMS, vol. 52(5), pages 1235-1252, October.
    4. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    5. Horváth, Gábor, 2015. "Efficient analysis of the MMAP[K]/PH[K]/1 priority queue," European Journal of Operational Research, Elsevier, vol. 246(1), pages 128-139.
    6. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    7. Liu, Han & Hua, Cheng & Lei, Chao, 2021. "Planning for time-varying volunteer firefighter systems under probabilistic service disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    8. Iannoni, Ana P. & Morabito, Reinaldo, 2023. "A review on hypercube queuing model's extensions for practical applications," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    9. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    10. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    11. Ansari, Sardar & Yoon, Soovin & Albert, Laura A., 2017. "An approximate hypercube model for public service systems with co-located servers and multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 143-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iannoni, Ana Paula & Chiyoshi, Fernando & Morabito, Reinaldo, 2015. "A spatially distributed queuing model considering dispatching policies with server reservation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 49-66.
    2. Iannoni, Ana P. & Morabito, Reinaldo, 2023. "A review on hypercube queuing model's extensions for practical applications," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    3. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
    4. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    5. Ansari, Sardar & Yoon, Soovin & Albert, Laura A., 2017. "An approximate hypercube model for public service systems with co-located servers and multiple response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 143-157.
    6. Sardar Ansari & Laura Albert McLay & Maria E. Mayorga, 2017. "A Maximum Expected Covering Problem for District Design," Transportation Science, INFORMS, vol. 51(1), pages 376-390, February.
    7. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    8. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    9. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    10. Susana Baptista & Rui Oliveira, 2012. "A case study on the application of an approximated hypercube model to emergency medical systems management," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 559-581, December.
    11. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.
    12. Atkinson, J.B. & Kovalenko, I.N. & Kuznetsov, N. & Mykhalevych, K.V., 2008. "A hypercube queueing loss model with customer-dependent service rates," European Journal of Operational Research, Elsevier, vol. 191(1), pages 223-239, November.
    13. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    14. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2009. "An optimization approach for ambulance location and the districting of the response segments on highways," European Journal of Operational Research, Elsevier, vol. 195(2), pages 528-542, June.
    15. Geroliminis, Nikolas & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2011. "A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network," European Journal of Operational Research, Elsevier, vol. 210(2), pages 287-300, April.
    16. Rautenstrauss, Maximiliane & Martin, Layla & Minner, Stefan, 2023. "Ambulance dispatching during a pandemic: Tradeoffs of categorizing patients and allocating ambulances," European Journal of Operational Research, Elsevier, vol. 304(1), pages 239-254.
    17. Akbar Karimi & Michel Gendreau & Vedat Verter, 2018. "Performance Approximation of Emergency Service Systems with Priorities and Partial Backups," Transportation Science, INFORMS, vol. 52(5), pages 1235-1252, October.
    18. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    19. Morabito, Reinaldo & Chiyoshi, Fernando & Galvão, Roberto D., 2008. "Non-homogeneous servers in emergency medical systems: Practical applications using the hypercube queueing model," Socio-Economic Planning Sciences, Elsevier, vol. 42(4), pages 255-270, December.
    20. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:242:y:2015:i:1:p:274-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.