IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0196392.html
   My bibliography  Save this article

Diversification and intensification of agricultural adaptation from global to local scales

Author

Listed:
  • Minjie Chen
  • Bruno Wichmann
  • Marty Luckert
  • Leigh Winowiecki
  • Wiebke Förch
  • Peter Läderach

Abstract

Smallholder farming systems are vulnerable to a number of challenges, including continued population growth, urbanization, income disparities, land degradation, decreasing farm size and productivity, all of which are compounded by uncertainty of climatic patterns. Understanding determinants of smallholder farming practices is critical for designing and implementing successful interventions, including climate change adaptation programs. We examine two dimensions wherein smallholder farmers may adapt agricultural practices; through intensification (i.e., adopt more practices) or diversification (i.e. adopt different practices). We use data on 5314 randomly sampled households located in 38 sites in 15 countries across four regions (East and West Africa, South Asia, and Central America). We estimate empirical models designed to assess determinants of both intensification and diversification of adaptation activities at global scales. Aspects of adaptive capacity that are found to increase intensification of adaptation globally include variables associated with access to information and human capital, financial considerations, assets, household infrastructure and experience. In contrast, there are few global drivers of adaptive diversification, with a notable exception being access to weather information, which also increases adaptive intensification. Investigating reasons for adaptation indicate that conditions present in underdeveloped markets provide the primary impetus for adaptation, even in the context of climate change. We also compare determinants across spatial scales, which reveals a variety of local avenues through which policy interventions can relax economic constraints and boost agricultural adaptation for both intensification and diversification. For example, access to weather information does not affect intensification adaptation in Africa, but is significant at several sites in Bangladesh and India. Moreover, this information leads to diversification of adaptive activities on some sites in South Asia and Central America, but increases specialization in West and East Africa.

Suggested Citation

  • Minjie Chen & Bruno Wichmann & Marty Luckert & Leigh Winowiecki & Wiebke Förch & Peter Läderach, 2018. "Diversification and intensification of agricultural adaptation from global to local scales," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
  • Handle: RePEc:plo:pone00:0196392
    DOI: 10.1371/journal.pone.0196392
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196392
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0196392&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0196392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shapiro, Daniel & Khemani, R. S., 1987. "The determinants of entry and exit reconsidered," International Journal of Industrial Organization, Elsevier, vol. 5(1), pages 15-26, March.
    2. Robert Finger & Stéphanie Schmid, 2008. "Modeling agricultural production risk and the adaptation to climate change," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 68(1), pages 25-41, May.
    3. Jean Imbs & Romain Wacziarg, 2003. "Stages of Diversification," American Economic Review, American Economic Association, vol. 93(1), pages 63-86, March.
    4. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    5. Amani Elobeid & Simla Tokgoz, 2008. "Removing Distortions in the U.S. Ethanol Market: What Does It Imply for the United States and Brazil?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(4), pages 918-932.
    6. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    7. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    8. Cowling, Keith & Waterson, Michael, 1976. "Price-Cost Margins and Market Structure," Economica, London School of Economics and Political Science, vol. 43(171), pages 267-274, August.
    9. Dyer, George A. & Taylor, J. Edward, 2011. "The Corn Price Surge: Impacts on Rural Mexico," World Development, Elsevier, vol. 39(10), pages 1878-1887.
    10. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    11. Ellis, Frank, 2000. "Rural Livelihoods and Diversity in Developing Countries," OUP Catalogue, Oxford University Press, number 9780198296966.
    12. Bola Amoke Awotide & Aziz A. Karimov & Aliou Diagne, 2016. "Agricultural technology adoption, commercialization and smallholder rice farmers’ welfare in rural Nigeria," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-24, December.
    13. Salvatore Di Falco & Marcella Veronesi, 2013. "How Can African Agriculture Adapt to Climate Change? A Counterfactual Analysis from Ethiopia," Land Economics, University of Wisconsin Press, vol. 89(4), pages 743-766.
    14. Steve Boucher & J. Edward Taylor, 2006. "Subsistence Response to Market Shocks," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(2), pages 279-291.
    15. Frank Ellis, 2000. "The Determinants of Rural Livelihood Diversification in Developing Countries," Journal of Agricultural Economics, Wiley Blackwell, vol. 51(2), pages 289-302, May.
    16. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    17. Maddison, David, 2007. "The perception of and adaptation to climate change in Africa," Policy Research Working Paper Series 4308, The World Bank.
    18. Moser, Christine M. & Barrett, Christopher B., 2003. "The disappointing adoption dynamics of a yield-increasing, low external-input technology: the case of SRI in Madagascar," Agricultural Systems, Elsevier, vol. 76(3), pages 1085-1100, June.
    19. van Rijn, Fédes & Bulte, Erwin & Adekunle, Adewale, 2012. "Social capital and agricultural innovation in Sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 108(C), pages 112-122.
    20. Rulon D. Pope & Richard Prescott, 1980. "Diversification in Relation to Farm Size and Other Socioeconomic Characteristics," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(3), pages 554-559.
    21. Salvatore Di Falco & Felice Adinolfi & Martina Bozzola & Fabian Capitanio, 2014. "Crop Insurance as a Strategy for Adapting to Climate Change," Journal of Agricultural Economics, Wiley Blackwell, vol. 65(2), pages 485-504, June.
    22. Robert Mendelsohn, 2012. "The Economics Of Adaptation To Climate Change In Developing Countries," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-21.
    23. Salvatore Di Falco, 2014. "Adaptation to climate change in Sub-Saharan agriculture: assessing the evidence and rethinking the drivers," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(3), pages 405-430.
    24. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lim, Krisha & Wichmann, Bruno & Luckert, Martin, 2021. "Adaptation, spatial effects, and targeting: Evidence from Africa and Asia," World Development, Elsevier, vol. 139(C).
    2. Bruno Benzaquen Perosa & Ramon Felipe Bicudo da Silva & Mateus Batistella, 2024. "Market Access and Agricultural Diversification: An Analysis of Brazilian Municipalities," Land, MDPI, vol. 13(1), pages 1-13, January.
    3. Krisha Lim & Bruno Wichmann & Martin K. Luckert & Peter Läderach, 2020. "Impacts of smallholder agricultural adaptation on food security: evidence from Africa, Asia, and Central America," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 21-35, February.
    4. Shahbaz Mushtaq & Jarrod Kath & Roger Stone & Ross Henry & Peter Läderach & Kathryn Reardon-Smith & David Cobon & Torben Marcussen & Neil Cliffe & Paul Kristiansen & Frederik Pischke, 2020. "Creating positive synergies between risk management and transfer to accelerate food system climate resilience," Climatic Change, Springer, vol. 161(3), pages 465-478, August.
    5. Tien D. N. Ho & Takuji W. Tsusaka & John K. M. Kuwornu & Avishek Datta & Loc T. Nguyen, 2022. "Do rice varieties matter? Climate change adaptation and livelihood diversification among rural smallholder households in the Mekong Delta region of Vietnam," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-33, January.
    6. Ana Maria Loboguerrero & Bruce M. Campbell & Peter J. M. Cooper & James W. Hansen & Todd Rosenstock & Eva Wollenberg, 2019. "Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    7. Regina Neudert & Naiba Allahverdiyeva & Niyaz Mammadov & Alexandre Didebulidze & Volker Beckmann, 2020. "Diversification of Livestock-Keeping Smallholders in Mountainous Rural Regions of Azerbaijan and Georgia," Land, MDPI, vol. 9(8), pages 1-25, August.
    8. Mulwa, Chalmers K. & Visser, Martine, 2020. "Farm diversification as an adaptation strategy to climatic shocks and implications for food security in northern Namibia," World Development, Elsevier, vol. 129(C).
    9. Ephias Mugari & Hillary Masundire & Maitseo Bolaane, 2020. "Adapting to Climate Change in Semi-Arid Rural Areas: A Case of the Limpopo Basin Part of Botswana," Sustainability, MDPI, vol. 12(20), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    2. Antonelli, Chiara & Coromaldi, Manuela & Pallante, Giacomo, 2022. "Crop and income diversification for rural adaptation: Insights from Ugandan panel data," Ecological Economics, Elsevier, vol. 195(C).
    3. Josephson, Anna Leigh & Michler, Jeffrey D., 2015. "To Specialize or Diversify: Agricultural Diversity and Poverty Persistence in Ethiopia," 2015 Conference, August 9-14, 2015, Milan, Italy 212459, International Association of Agricultural Economists.
    4. Lim, Krisha & Wichmann, Bruno & Luckert, Martin, 2021. "Adaptation, spatial effects, and targeting: Evidence from Africa and Asia," World Development, Elsevier, vol. 139(C).
    5. Heleene Tambet & Yaniv Stopnitzky, 2021. "Climate Adaptation and Conservation Agriculture among Peruvian Farmers," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 900-922, May.
    6. Krisha Lim & Bruno Wichmann & Martin K. Luckert & Peter Läderach, 2020. "Impacts of smallholder agricultural adaptation on food security: evidence from Africa, Asia, and Central America," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 21-35, February.
    7. Michler, Jeffrey D. & Josephson, Anna L., 2017. "To Specialize or Diversify: Agricultural Diversity and Poverty Dynamics in Ethiopia," World Development, Elsevier, vol. 89(C), pages 214-226.
    8. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    9. Tiziana Pagnani & Elisabetta Gotor & Enoch Kikulwe & Francesco Caracciolo, 2021. "Livelihood assets’ influence on Ugandan farmers’ control practices for Banana Xanthomonas Wilt (BXW)," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-19, December.
    10. Munir Ahmed & Ghulam Mustafa & Muhammad Iqbal, 2016. "Impact of Farm Households’ Adaptations to Climate Change on Food Security: Evidence from Different Agro-ecologies of Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(4), pages 561-588.
    11. Huang, Kaixing & Wang, Jinxia & Huang, Jikun & Findlay, Christopher, 2018. "The potential benefits of agricultural adaptation to warming in China in the long run," Environment and Development Economics, Cambridge University Press, vol. 23(2), pages 139-160, April.
    12. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    13. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    14. Rahwa Kidane & Martin Prowse & Andreas Neergaard, 2019. "Bespoke Adaptation in Rural Africa? An Asset-Based Approach from Southern Ethiopia," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 31(3), pages 413-432, July.
    15. Aniseh S. Bro, 2020. "Climate Change Adaptation, Food Security, and Attitudes toward Risk among Smallholder Coffee Farmers in Nicaragua," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    16. Varma, Poornima, 2017. "Adoption of System of Rice Intensification and its Impact on Rice Yields and Household Income: An Analysis for India," IIMA Working Papers WP2017-02-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    17. Mintewab Bezabih & Remidius Ruhinduka & Mare Sarr, 2016. "Climate change perception and system of rice intensification (SRI) impact on dispersion and downside risk: a moment approximation approach," GRI Working Papers 256, Grantham Research Institute on Climate Change and the Environment.
    18. Varma, P., 2018. "Adoption and the Impact of System of Rice Intensification on Rice Yields and Household Income: A study for India," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275986, International Association of Agricultural Economists.
    19. Bola Amoke Awotide & Adebayo Ogunniyi & Kehinde Oluseyi Olagunju & Lateef Olalekan Bello & Amadou Youssouf Coulibaly & Alexander Nimo Wiredu & Bourémo Kone & Aly Ahamadou & Victor Manyong & Tahirou Ab, 2022. "Evaluating the Heterogeneous Impacts of Adoption of Climate-Smart Agricultural Technologies on Rural Households’ Welfare in Mali," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
    20. Tanui, Joseph & Groeneveld, Rolf & Klomp, Jeroen & Mowo, Jeremiahs & Ierland, Ekko C. van, 2013. "Explaining investments in sustainable land management: The role of various income sources in the smallholder farming systems of western Kenya," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 161275, African Association of Agricultural Economists (AAAE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0196392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.