IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v103y2016i4p843-859..html
   My bibliography  Save this article

In-sample forecasting with local linear survival densities

Author

Listed:
  • M. Hiabu
  • E. Mammen
  • M. D. Martìnez-Miranda
  • J. P. Nielsen

Abstract

In this paper, in-sample forecasting is defined as forecasting a structured density to sets where it is unobserved. The structured density consists of one-dimensional in-sample components that identify the density on such sets. We focus on the multiplicative density structure, which has recently been seen as the underlying structure of non-life insurance forecasts. In non-life insurance, the in-sample area is defined as one triangle and the forecasting area as the triangle which, added to the first triangle, completes a square. In recent approaches, two one-dimensional components are estimated by projecting an unstructured two-dimensional density estimator onto the space of multiplicatively separable functions. We show that time-reversal reduces the problem to two one-dimensional problems, where the one-dimensional data are left-truncated and a one-dimensional survival density estimator is needed. We then use the local linear density smoother with weighted crossvalidated and do-validated bandwidth selectors. Full asymptotic theory is provided, with and without time-reversal. Finite-sample studies and an application to non-life insurance are included.

Suggested Citation

  • M. Hiabu & E. Mammen & M. D. Martìnez-Miranda & J. P. Nielsen, 2016. "In-sample forecasting with local linear survival densities," Biometrika, Biometrika Trust, vol. 103(4), pages 843-859.
  • Handle: RePEc:oup:biomet:v:103:y:2016:i:4:p:843-859.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asw038
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mammen, Enno & Martínez Miranda, María Dolores & Nielsen, Jens Perch & Sperlich, Stefan, 2011. "Do-Validation for Kernel Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 651-660.
    2. Savchuk, Olga Y. & Hart, Jeffrey D. & Sheather, Simon J., 2010. "Indirect Cross-Validation for Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 415-423.
    3. Mack, Thomas, 2008. "Correction Note to “The Prediction Error of Bornhuetter/Ferguson” By T. Mack," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 38(02), pages 669-669, November.
    4. Mack, Thomas, 2008. "The Prediction Error of Bornhuetter/Ferguson," ASTIN Bulletin, Cambridge University Press, vol. 38(1), pages 87-103, May.
    5. Nils-Bastian Heidenreich & Anja Schindler & Stefan Sperlich, 2013. "Bandwidth selection for kernel density estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 403-433, October.
    6. Mammen, Enno & Martínez Miranda, María Dolores & Nielsen, Jens Perch, 2015. "In-sample forecasting applied to reserving and mesothelioma mortality," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 76-86.
    7. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    8. D. Kuang & B. Nielsen & J. P. Nielsen, 2009. "Chain-Ladder as Maximum Likelihood Revisited," Economics Papers 2009-W08, Economics Group, Nuffield College, University of Oxford.
    9. Hirukawa, Masayuki & Sakudo, Mari, 2014. "Nonnegative bias reduction methods for density estimation using asymmetric kernels," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 112-123.
    10. Kuang, D. & Nielsen, B. & Nielsen, J. P., 2009. "Chain-Ladder as Maximum Likelihood Revisited," Annals of Actuarial Science, Cambridge University Press, vol. 4(1), pages 105-121, March.
    11. Norberg, Ragnar, 1993. "Prediction of Outstanding Liabilities in Non-Life Insurance1," ASTIN Bulletin, Cambridge University Press, vol. 23(1), pages 95-115, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    2. Mammen, Enno & Martínez-Miranda, María Dolores & Nielsen, Jens Perch & Vogt, Michael, 2021. "Calendar effect and in-sample forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 31-52.
    3. Bischofberger, Stephan M. & Hiabu, Munir & Mammen, Enno & Nielsen, Jens Perch, 2019. "A comparison of in-sample forecasting methods," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 133-154.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bischofberger, Stephan M. & Hiabu, Munir & Mammen, Enno & Nielsen, Jens Perch, 2019. "A comparison of in-sample forecasting methods," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 133-154.
    2. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    3. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    4. Bent Nielsen, 2014. "Deviance analysis of age-period-cohort models," Economics Papers 2014-W03, Economics Group, Nuffield College, University of Oxford.
    5. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Papers 1806.05939, arXiv.org.
    6. Di Kuang & Bent Nielsen & Jens Perch Nielsen, 2011. "Forecasting in an Extended Chain‐Ladder‐Type Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(2), pages 345-359, 06.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:103:y:2016:i:4:p:843-859.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.