IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v41y2014i5p947-971.html
   My bibliography  Save this article

Accounting for travel time variability in the optimal pricing of cars and buses

Author

Listed:
  • Alejandro Tirachini
  • David Hensher
  • Michiel Bliemer

Abstract

A number of studies have shown that in addition to travel time and cost as the common influences on mode, route and departure time choices, travel time variability plays an increasingly important role, especially in the presence of traffic congestion on roads and crowding on public transport. The dominant focus of modelling and implementation of optimal pricing that incorporates trip time variability has been in the context of road pricing for cars. The main objective of this paper is to introduce a non-trivial extension to the existing literature on optimal pricing in a multimodal setting, building in the role of travel time variability as a source of disutility for car and bus users. We estimate the effect of variability in travel time and bus headway on optimal prices (i.e., tolls for cars and fares for buses) and optimal bus capacity (i.e., frequencies and size) accounting for crowding on buses, under a social welfare maximisation framework. Travel time variability is included by adopting the well-known mean–variance model, using an empirical relationship between the mean and standard deviation of travel times. We illustrate our model with an application to a highly congested corridor with cars, buses and walking as travel alternatives in Sydney, Australia. There are three main findings that have immediate policy implications: (i) including travel time variability results in higher optimal car tolls and substantial increases in toll revenue, while optimal bus fares remain almost unchanged; (ii) when bus headways are variable, the inclusion of travel time variability as a source of disutility for users yields higher optimal bus frequencies; and (iii) including both travel time variability and crowding discomfort leads to higher optimal bus sizes. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Alejandro Tirachini & David Hensher & Michiel Bliemer, 2014. "Accounting for travel time variability in the optimal pricing of cars and buses," Transportation, Springer, vol. 41(5), pages 947-971, September.
  • Handle: RePEc:kap:transp:v:41:y:2014:i:5:p:947-971
    DOI: 10.1007/s11116-014-9515-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-014-9515-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-014-9515-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    2. Eliasson, Jonas, 2009. "A cost-benefit analysis of the Stockholm congestion charging system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 468-480, May.
    3. Lam, Terence C. & Small, Kenneth A., 0. "The value of time and reliability: measurement from a value pricing experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 231-251, April.
    4. Cepeda, M. & Cominetti, R. & Florian, M., 2006. "A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 437-459, July.
    5. Li, Zheng & Hensher, David A. & Rose, John M., 2010. "Willingness to pay for travel time reliability in passenger transport: A review and some new empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 384-403, May.
    6. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    7. Brownstone, David & Small, Kenneth A., 2005. "Valuing time and reliability: assessing the evidence from road pricing demonstrations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 279-293, May.
    8. Roberto Cominetti & José Correa, 2001. "Common-Lines and Passenger Assignment in Congested Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 250-267, August.
    9. Small, Kenneth A., 2001. "The Value of Pricing," University of California Transportation Center, Working Papers qt0rm449sx, University of California Transportation Center.
    10. Kijung Ahn, 2009. "Road Pricing and Bus Service Policies," Journal of Transport Economics and Policy, University of Bath, vol. 43(1), pages 25-53, January.
    11. Erik Verhoef & Michiel C.J. Bliemer & Linda Steg & Bert van Wee (ed.), 2008. "Pricing in Road Transport," Books, Edward Elgar Publishing, number 4192.
    12. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    13. Bates, John & Polak, John & Jones, Peter & Cook, Andrew, 0. "The valuation of reliability for personal travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 191-229, April.
    14. Yan, Hai & Lam, William H. K., 1996. "Optimal road tolls under conditions of queueing and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 319-332, September.
    15. Strathman, James G. & Hopper, Janet R., 1993. "Empirical analysis of bus transit on-time performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(2), pages 93-100, April.
    16. Stefanie Peer & Carl Koopmans & Erik T. Verhoef, 2010. "Predicting Travel Time Variability for Cost-Benefit Analysis," Tinbergen Institute Discussion Papers 10-071/3, Tinbergen Institute.
    17. Cortés, Cristián E. & Jara-Díaz, Sergio & Tirachini, Alejandro, 2011. "Integrating short turning and deadheading in the optimization of transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 419-434, June.
    18. Fosgerau, Mogens & Karlström, Anders, 2010. "The value of reliability," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 38-49, January.
    19. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    20. Eliasson, Jonas, 2009. "Forecasting travel time variability," MPRA Paper 92470, University Library of Munich, Germany.
    21. W. Burke Jackson & James V. Jucker, 1982. "An Empirical Study of Travel Time Variability and Travel Choice Behavior," Transportation Science, INFORMS, vol. 16(4), pages 460-475, November.
    22. Delle Site, Paolo & Filippi, Francesco, 1998. "Service optimization for bus corridors with short-turn strategies and variable vehicle size," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 19-38, January.
    23. Dion, Francois & Rakha, Hesham & Kang, Youn-Soo, 2004. "Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 99-122, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Kruszyna & Przemysław Śleszyński & Jeremi Rychlewski, 2021. "Dependencies between Demographic Urbanization and the Agglomeration Road Traffic Volumes: Evidence from Poland," Land, MDPI, vol. 10(1), pages 1-22, January.
    2. Li, Yanan & Li, Xiang & Zhang, Sicheng, 2021. "Optimal pricing of customized bus services and ride-sharing based on a competitive game model," Omega, Elsevier, vol. 103(C).
    3. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    4. Durán-Hormazábal, Elsa & Tirachini, Alejandro, 2016. "Estimation of travel time variability for cars, buses, metro and door-to-door public transport trips in Santiago, Chile," Research in Transportation Economics, Elsevier, vol. 59(C), pages 26-39.
    5. Nyaki Prosper S. & Bwire Hannibal & Mushule Nurdin K., 2020. "Travel Time Reliability of Bus Operation in Heterogeneous Traffic Conditions of Dar es Salaam City, Tanzania," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 11(2), pages 44-55, November.
    6. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2018. "Do buses hinder cyclists or is it the other way around? Optimal bus fares, bus stops and cycling tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 326-346.
    7. Rojo, Marta & dell’Olio, Luigi & Gonzalo-Orden, Hernán & Ibeas, Ángel, 2015. "Inclusion of quality criteria in public bus service contracts in metropolitan areas," Transport Policy, Elsevier, vol. 42(C), pages 52-63.
    8. Loder, Allister & Bliemer, Michiel C.J. & Axhausen, Kay W., 2022. "Optimal pricing and investment in a multi-modal city — Introducing a macroscopic network design problem based on the MFD," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 113-132.
    9. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2017. "Cycling tolls and optimal number of bus stops: the importance of congestion and crowding," Working papers in Transport Economics 2017:10, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    10. Tirachini, Alejandro & Antoniou, Constantinos, 2020. "The economics of automated public transport: Effects on operator cost, travel time, fare and subsidy," Economics of Transportation, Elsevier, vol. 21(C).
    11. Godachevich, Javiera & Tirachini, Alejandro, 2021. "Does the measured performance of bus operators depend on the index chosen to assess reliability in contracts? An analysis of bus headway variability," Research in Transportation Economics, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teppei Kato & Kenetsu Uchida & William H. K. Lam & Agachai Sumalee, 2021. "Estimation of the value of travel time and of travel time reliability for heterogeneous drivers in a road network," Transportation, Springer, vol. 48(4), pages 1639-1670, August.
    2. Paul Koster & Hans Koster, 2013. "Analysing Heterogeneity in the Value of Travel Time and Reliability: A Semiparametric Estimation Approach," ERSA conference papers ersa13p1032, European Regional Science Association.
    3. Wijayaratna, Kasun P. & Dixit, Vinayak V., 2016. "Impact of information on risk attitudes: Implications on valuation of reliability and information," Journal of choice modelling, Elsevier, vol. 20(C), pages 16-34.
    4. Wang, Qian & Sundberg, Marcus & Karlström, Anders, 2013. "Scheduling choices under rank dependent utility maximization," Working papers in Transport Economics 2013:16, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    5. Börjesson, Maria & Eliasson, Jonas, 2011. "On the use of "average delay" as a measure of train reliability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(3), pages 171-184, March.
    6. Durán-Hormazábal, Elsa & Tirachini, Alejandro, 2016. "Estimation of travel time variability for cars, buses, metro and door-to-door public transport trips in Santiago, Chile," Research in Transportation Economics, Elsevier, vol. 59(C), pages 26-39.
    7. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    8. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    9. Stefanie Peer & Erik Verhoef & Jasper Knockaert & Paul Koster & Yin-Yen Tseng, 2011. "Long-Run vs. Short-Run Perspectives on Consumer Scheduling: Evidence from a Revealed-Preference Experiment among Peak-Hour Road Commuters," Tinbergen Institute Discussion Papers 11-181/3, Tinbergen Institute, revised 25 Aug 2014.
    10. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    11. Stefanie Peer & Erik Verhoef & Jasper Knockaert & Paul Koster & Yin‐Yen Tseng, 2015. "Long‐Run Versus Short‐Run Perspectives On Consumer Scheduling: Evidence From A Revealed‐Preference Experiment Among Peak‐Hour Road Commuters," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(1), pages 303-323, February.
    12. Mickaël Beaud & Thierry Blayac & Maïté Stéphan, 2014. "Measurements and properties of the values of time and reliability," Working Papers 14-06, LAMETA, Universtiy of Montpellier, revised Jul 2014.
    13. Beaud, Mickael & Blayac, Thierry & Stéphan, Maïté, 2016. "The impact of travel time variability and travelers’ risk attitudes on the values of time and reliability," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 207-224.
    14. Abegaz, Dereje & Hjorth, Katrine & Rich, Jeppe, 2017. "Testing the slope model of scheduling preferences on stated preference data," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 409-436.
    15. Zheng Li & Alejandro Tirachini & David A. Hensher, 2012. "Embedding Risk Attitudes in a Scheduling Model: Application to the Study of Commuting Departure Time," Transportation Science, INFORMS, vol. 46(2), pages 170-188, May.
    16. Koster, Paul & Kroes, Eric & Verhoef, Erik, 2011. "Travel time variability and airport accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1545-1559.
    17. Peer, Stefanie & Knockaert, Jasper & Verhoef, Erik T., 2016. "Train commuters’ scheduling preferences: Evidence from a large-scale peak avoidance experiment," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 314-333.
    18. Dixit, Vinayak V. & Harb, Rami C. & Martínez-Correa, Jimmy & Rutström, Elisabet E., 2015. "Measuring risk aversion to guide transportation policy: Contexts, incentives, and respondents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 15-34.
    19. Fosgerau, Mogens & Karlström, Anders, 2010. "The value of reliability," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 38-49, January.
    20. de Jong, Gerard C. & Bliemer, Michiel C.J., 2015. "On including travel time reliability of road traffic in appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 80-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:41:y:2014:i:5:p:947-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.