IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v21y2021i1d10.1007_s11067-020-09511-8.html
   My bibliography  Save this article

A Game-Theoretic Approach to the Freight Transportation Pricing Problem in the Presence of Intermodal Service Providers in a Competitive Market

Author

Listed:
  • Mohammad Tamannaei

    (Isfahan University of Technology)

  • Hamid Zarei

    (Isfahan University of Technology)

  • Sajede Aminzadegan

    (Isfahan University of Technology)

Abstract

This article studies a competitive freight transportation pricing problem in the presence of two Intermodal Service Providers (ISPs) and a Direct Transportation System (DTS). The ISPs apply both rail and road transportation modes to carry the demands of a network of customers. The DTS uses only roads to carry the demands, without any transhipment at a distribution center. Each customer chooses its best transportation service based on the prices offered by the ISPs and the expenses of using the DTS. The ISPs determine their prices to maximize their profits, considering the customers’ choice behaviour. In order to determine the equilibrium decisions, a non-cooperative game-theoretic approach based on Stackelberg leader-follower competition is applied. Mixed-integer linear programming models are proposed to formulate this competition. A real-life case study is also conducted to demonstrate the validity of the models. We find that a barrier pricing strategy from the leader to deter the entrance of the follower ISP is not recommended for both of them because it may even lead to a negative value of profits for the leader. Finally, some sustainability objectives of the government, as the strategic decision maker, are examined. The results could help the government assess the effects of its policies on the transportation market, the environment, and the society.

Suggested Citation

  • Mohammad Tamannaei & Hamid Zarei & Sajede Aminzadegan, 2021. "A Game-Theoretic Approach to the Freight Transportation Pricing Problem in the Presence of Intermodal Service Providers in a Competitive Market," Networks and Spatial Economics, Springer, vol. 21(1), pages 123-173, March.
  • Handle: RePEc:kap:netspa:v:21:y:2021:i:1:d:10.1007_s11067-020-09511-8
    DOI: 10.1007/s11067-020-09511-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-020-09511-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-020-09511-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larranaga, Ana Margarita & Arellana, Julian & Senna, Luiz Afonso, 2017. "Encouraging intermodality: A stated preference analysis of freight mode choice in Rio Grande do Sul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 202-211.
    2. Zou, Zong-Bao & Wang, Jian-Jun & Deng, Gui-Shi & Chen, Haozhe, 2016. "Third-party remanufacturing mode selection: Outsourcing or authorization?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 1-19.
    3. Jose Holguín-Veras & Ning Xu & Gerard Jong & Hedi Maurer, 2011. "An Experimental Economics Investigation of Shipper-carrier Interactions in the Choice of Mode and Shipment Size in Freight Transport," Networks and Spatial Economics, Springer, vol. 11(3), pages 509-532, September.
    4. Shi, Yangyan & Zhang, Abraham & Arthanari, Tiru & Liu, Yanping & Cheng, T.C.E., 2016. "Third-party purchase: An empirical study of third-party logistics providers in China," International Journal of Production Economics, Elsevier, vol. 171(P2), pages 189-200.
    5. Nagurney, Anna & Saberi, Sara & Shukla, Shivani & Floden, Jonas, 2015. "Supply chain network competition in price and quality with multiple manufacturers and freight service providers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 248-267.
    6. Román, Concepción & Arencibia, Ana Isabel & Feo-Valero, María, 2017. "A latent class model with attribute cut-offs to analyze modal choice for freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 212-227.
    7. Kuyzu, Gültekin & Akyol, Çağla Gül & Ergun, Özlem & Savelsbergh, Martin, 2015. "Bid price optimization for truckload carriers in simultaneous transportation procurement auctions," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 34-58.
    8. Majbah Uddin & Nathan Huynh, 2019. "Reliable Routing of Road-Rail Intermodal Freight under Uncertainty," Networks and Spatial Economics, Springer, vol. 19(3), pages 929-952, September.
    9. Gremm, Cornelia, 2018. "The effect of intermodal competition on the pricing behaviour of a railway company: Evidence from the German case," Research in Transportation Economics, Elsevier, vol. 72(C), pages 49-64.
    10. Xie, Yangyang & Liang, Xiaoying & Ma, Lijun & Yan, Houmin, 2017. "Empty container management and coordination in intermodal transport," European Journal of Operational Research, Elsevier, vol. 257(1), pages 223-232.
    11. Kuang, Zhonghong & Lian, Zeng & Lien, Jaimie W. & Zheng, Jie, 2020. "Serial and parallel duopoly competition in multi-segment transportation routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    12. Genc, Talat S. & Giovanni, Pietro De, 2017. "Trade-in and save: A two-period closed-loop supply chain game with price and technology dependent returns," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 514-527.
    13. Azadian, Farshid & Murat, Alper, 2018. "Service location grouping and pricing in transportation: Application in air cargo," European Journal of Operational Research, Elsevier, vol. 267(3), pages 933-943.
    14. Reis, Vasco, 2014. "Analysis of mode choice variables in short-distance intermodal freight transport using an agent-based model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 100-120.
    15. Zhang, Qi & Wang, Wenyuan & Peng, Yun & Zhang, Junyi & Guo, Zijian, 2018. "A game-theoretical model of port competition on intermodal network and pricing strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 19-39.
    16. Shinghal, Nalin & Fowkes, Tony, 2002. "Freight mode choice and adaptive stated preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(5), pages 367-378, September.
    17. Saeed, Naima, 2013. "Cooperation among freight forwarders: Mode choice and intermodal freight transport," Research in Transportation Economics, Elsevier, vol. 42(1), pages 77-86.
    18. Mohit Goswami & Arijit De & Muhammad Khoirul Khakim Habibi & Yash Daultani, 2020. "Examining freight performance of third-party logistics providers within the automotive industry in India: an environmental sustainability perspective," Post-Print hal-03159617, HAL.
    19. Varun Raturi & Ashish Verma, 2020. "A game-theoretic approach to analyse inter-modal competition between high-speed rail and airlines in the Indian context," Transportation Planning and Technology, Taylor & Francis Journals, vol. 43(1), pages 20-47, January.
    20. Xu, Su Xiu & Huang, George Q., 2014. "Efficient auctions for distributed transportation procurement," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 47-64.
    21. Phillip J. Lederer, 2020. "Location-Price Competition with Delivered Pricing and Elastic Demand," Networks and Spatial Economics, Springer, vol. 20(2), pages 449-477, June.
    22. Chen, Hong & Lam, Jasmine Siu Lee & Liu, Nan, 2018. "Strategic investment in enhancing port–hinterland container transportation network resilience: A network game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 83-112.
    23. Lim, Wei Shi, 2000. "A lemons market? An incentive scheme to induce truth-telling in third party logistics providers," European Journal of Operational Research, Elsevier, vol. 125(3), pages 519-525, September.
    24. Rodrigues, Antonio Carlos & Martins, Ricardo Silveira & Wanke, Peter Fernandes & Siegler, Janaina, 2018. "Efficiency of specialized 3PL providers in an emerging economy," International Journal of Production Economics, Elsevier, vol. 205(C), pages 163-178.
    25. Stole, Lars A., 2007. "Price Discrimination and Competition," Handbook of Industrial Organization, in: Mark Armstrong & Robert Porter (ed.), Handbook of Industrial Organization, edition 1, volume 3, chapter 34, pages 2221-2299, Elsevier.
    26. Mohit Goswami & Arijit De & Muhammad Khoirul Khakim Habibi & Yash Daultani, 2020. "Examining freight performance of third-party logistics providers within the automotive industry in India: an environmental sustainability perspective," International Journal of Production Research, Taylor & Francis Journals, vol. 58(24), pages 7565-7592, December.
    27. Tsunoda, Yushi, 2018. "Transportation policy for high-speed rail competing with airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 350-360.
    28. Woo, Hong Seng & Saghiri, Soroosh, 2011. "Order assignment considering buyer, third-party logistics provider, and suppliers," International Journal of Production Economics, Elsevier, vol. 130(2), pages 144-152, April.
    29. Simon P. Anderson & Wesley W. Wilson, 2008. "Spatial Competition, Pricing, And Market Power In Transportation: A Dominant Firm Model," Journal of Regional Science, Wiley Blackwell, vol. 48(2), pages 367-397, May.
    30. N. Norouzi & R. Tavakkoli-Moghaddam & M. Ghazanfari & M. Alinaghian & A. Salamatbakhsh, 2012. "A New Multi-objective Competitive Open Vehicle Routing Problem Solved by Particle Swarm Optimization," Networks and Spatial Economics, Springer, vol. 12(4), pages 609-633, December.
    31. M. Alinaghian & M. Ghazanfari & N. Norouzi & H. Nouralizadeh, 2017. "A Novel Model for the Time Dependent Competitive Vehicle Routing Problem: Modified Random Topology Particle Swarm Optimization," Networks and Spatial Economics, Springer, vol. 17(4), pages 1185-1211, December.
    32. Jharkharia, Sanjay & Shankar, Ravi, 2007. "Selection of logistics service provider: An analytic network process (ANP) approach," Omega, Elsevier, vol. 35(3), pages 274-289, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rategh, Yalda & Tamannaei, Mohammad & Zarei, Hamid, 2022. "A game-theoretic approach to an oligopolistic transportation market: Coopetition between incumbent systems subject to the entrance threat of an HSR service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 144-171.
    2. Baṣak Altan & Okan Örsan Özener, 2021. "A Game Theoretical Approach for Improving the Operational Efficiencies of Less-than-truckload Carriers Through Load Exchanges," Networks and Spatial Economics, Springer, vol. 21(3), pages 547-579, September.
    3. Tamannaei, Mohammad & Zarei, Hamid & Rasti-Barzoki, Morteza, 2021. "A game theoretic approach to sustainable freight transportation: Competition between road and intermodal road–rail systems with government intervention," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 272-295.
    4. Ma, Mingyou & Zhang, Fangni & Liu, Wei & Dixit, Vinayak, 2022. "A game theoretical analysis of metro-integrated city logistics systems," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 14-27.
    5. Mostafa Pazoki & Hamed Samarghandi & Mehdi Behroozi, 2023. "Increasing Supply Chain Resiliency Through Equilibrium Pricing and Stipulating Transportation Quota Regulation," Papers 2308.00681, arXiv.org, revised Oct 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalahasthi, Lokesh & Holguín-Veras, José & Yushimito, Wilfredo F., 2022. "A freight origin-destination synthesis model with mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    2. Pal Singh, Satender & Adhikari, Arnab & Majumdar, Adrija & Bisi, Arnab, 2022. "Does service quality influence operational and financial performance of third party logistics service providers? A mixed multi criteria decision making -text mining-based investigation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    3. Li, Qinglin & Rezaei, Jafar & Tavasszy, Lori & Wiegmans, Bart & Guo, Jingwei & Tang, Yinying & Peng, Qiyuan, 2020. "Customers’ preferences for freight service attributes of China Railway Express," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 225-236.
    4. Tao, Xuezong & Zhu, Lichao, 2020. "Meta-analysis of value of time in freight transportation: A comprehensive review based on discrete choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 213-233.
    5. Günay, Gürkan, 2023. "Shipment size and vehicle choice modeling for road freight transport: A geographical perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    6. Van Nguyen, Truong & Zhang, Jie & Zhou, Li & Meng, Meng & He, Yong, 2020. "A data-driven optimization of large-scale dry port location using the hybrid approach of data mining and complex network theory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    7. Xiaoxu Chen & Peng Xu & Thomas Walker & Shengzhong Huang, 2019. "Pricing and Ordering Decisions in a Retailer Dominant Channel Involving a Third-Party Logistics Provider," Complexity, Hindawi, vol. 2019, pages 1-15, July.
    8. Jiang, Xiaodan & Fan, Houming & Luo, Meifeng & Xu, Zhenlin, 2020. "Strategic port competition in multimodal network development considering shippers’ choice," Transport Policy, Elsevier, vol. 90(C), pages 68-89.
    9. Gohari, Adel & Ahmad, Anuar Bin & Balasbaneh, Ali Tighnavard & Gohari, Ali & Hasan, Razi & Sholagberu, Abdulkadir Taofeeq, 2022. "Significance of intermodal freight modal choice criteria: MCDM-based decision support models and SP-based modal shift policies," Transport Policy, Elsevier, vol. 121(C), pages 46-60.
    10. Gianmarco Bressanelli & Nicola Saccani & Marco Perona & Irene Baccanelli, 2020. "Towards Circular Economy in the Household Appliance Industry: An Overview of Cases," Resources, MDPI, vol. 9(11), pages 1-23, November.
    11. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    12. Mariia OLKHOVA & Yurii DAVIDICH & Dmytro ROSLAVTSEV & Nataliia DAVIDICH, 2017. "The Efficiency Of Transportating Perishable Goods By Road And Rail," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 12(4), pages 37-50, December.
    13. Phill Wheat & Alexander D. Stead & Yue Huang & Andrew Smith, 2019. "Lowering Transport Costs and Prices by Competition: Regulatory and Institutional Reforms in Low Income Countries," Sustainability, MDPI, vol. 11(21), pages 1-19, October.
    14. Kurtuluş, Ercan & Çetin, İsmail Bilge, 2020. "Analysis of modal shift potential towards intermodal transportation in short-distance inland container transport," Transport Policy, Elsevier, vol. 89(C), pages 24-37.
    15. Qiao, Haike & Su, Qin, 2021. "Distribution channel and licensing strategy choice considering consumer online reviews in a closed-loop supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    16. Zhang, Rong & Jian, Wenliang & Tavasszy, Lóránt, 2018. "Estimation of network level benefits of reliability improvements in intermodal freight transport," Research in Transportation Economics, Elsevier, vol. 70(C), pages 1-8.
    17. Khakdaman, Masoud & Rezaei, Jafar & Tavasszy, Lóránt A., 2020. "Shippers’ willingness to delegate modal control in freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    18. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    19. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
    20. Snežana Tadić & Milovan Kovač & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2021. "The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development," Sustainability, MDPI, vol. 13(10), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:21:y:2021:i:1:d:10.1007_s11067-020-09511-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.