IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v141y2020ics1366554520306785.html
   My bibliography  Save this article

Shippers’ willingness to delegate modal control in freight transportation

Author

Listed:
  • Khakdaman, Masoud
  • Rezaei, Jafar
  • Tavasszy, Lóránt A.

Abstract

This paper investigates the willingness of shippers to delegate control over the transportation mode in freight transportation, using discrete choice analysis. Data originate from a large survey among global shippers. The results show that, under certain conditions, most shippers are willing to hand over mode selection authority to the service provider. Using latent class analysis, we classify shippers into four market segments, each with a different degree of willingness against different types of performance improvements. Firms can use this characterization of freight transportation demand to design service packages that will meet the demands of global supply chains.

Suggested Citation

  • Khakdaman, Masoud & Rezaei, Jafar & Tavasszy, Lóránt A., 2020. "Shippers’ willingness to delegate modal control in freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:transe:v:141:y:2020:i:c:s1366554520306785
    DOI: 10.1016/j.tre.2020.102027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520306785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.102027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsiao, H.I. & Kemp, R.G.M. & van der Vorst, J.G.A.J. & (Onno) Omta, S.W.F., 2010. "A classification of logistic outsourcing levels and their impact on service performance: Evidence from the food processing industry," International Journal of Production Economics, Elsevier, vol. 124(1), pages 75-86, March.
    2. O. Norojono & W. Young, 2003. "A Stated preference freight mode choice model," Transportation Planning and Technology, Taylor & Francis Journals, vol. 26(2), pages 1-1, April.
    3. Bergantino, Angela S. & Bierlaire, Michel & Catalano, Mario & Migliore, Marco & Amoroso, Salvatore, 2013. "Taste heterogeneity and latent preferences in the choice behaviour of freight transport operators," Transport Policy, Elsevier, vol. 30(C), pages 77-91.
    4. Bliemer, Michiel C.J. & Collins, Andrew T., 2016. "On determining priors for the generation of efficient stated choice experimental designs," Journal of choice modelling, Elsevier, vol. 21(C), pages 10-14.
    5. Roso, Violeta & Woxenius, Johan & Lumsden, Kenth, 2009. "The dry port concept: connecting container seaports with the hinterland," Journal of Transport Geography, Elsevier, vol. 17(5), pages 338-345.
    6. Edoardo Marcucci, 2013. "Logistics Managers' Stated Preferences For Freight Service Attributes: A Comparative Research Method Analysis," Working Papers 0213, CREI Università degli Studi Roma Tre, revised 2013.
    7. Arunotayanun, Kriangkrai & Polak, John W., 2011. "Taste heterogeneity and market segmentation in freight shippers' mode choice behaviour," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 138-148, March.
    8. Coulter, Ronald L. & Darden, William R. & Coulter, Mary K. & Brown, Gene, 1989. "Freight transportation carrier selection criteria : Identification of service dimensions for competitive positioning," Journal of Business Research, Elsevier, vol. 19(1), pages 51-66, August.
    9. John Rose & Michiel Bliemer, 2013. "Sample size requirements for stated choice experiments," Transportation, Springer, vol. 40(5), pages 1021-1041, September.
    10. Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.
    11. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    12. Danielis, Romeo & Marcucci, Edoardo, 2007. "Attribute cut-offs in freight service selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(5), pages 506-515, September.
    13. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    14. Peter Boxall & Wiktor Adamowicz, 2002. "Understanding Heterogeneous Preferences in Random Utility Models: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(4), pages 421-446, December.
    15. Reis, Vasco, 2015. "Should we keep on renaming a +35-year-old baby?," Journal of Transport Geography, Elsevier, vol. 46(C), pages 173-179.
    16. Di Ciommo, Floridea & Monzón, Andrés & Fernandez-Heredia, Alvaro, 2013. "Improving the analysis of road pricing acceptability surveys by using hybrid models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 302-316.
    17. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    18. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    19. Román, Concepción & Arencibia, Ana Isabel & Feo-Valero, María, 2017. "A latent class model with attribute cut-offs to analyze modal choice for freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 212-227.
    20. Arencibia, Ana Isabel & Feo-Valero, María & García-Menéndez, Leandro & Román, Concepción, 2015. "Modelling mode choice for freight transport using advanced choice experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 252-267.
    21. Wen, Chieh-Hua & Lai, Shan-Ching, 2010. "Latent class models of international air carrier choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(2), pages 211-221, March.
    22. Albert Veenstra & Rob Zuidwijk & Eelco van Asperen, 2012. "The extended gate concept for container terminals: Expanding the notion of dry ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 14(1), pages 14-32, March.
    23. Reis, Vasco, 2014. "Analysis of mode choice variables in short-distance intermodal freight transport using an agent-based model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 100-120.
    24. Joan Walker & Jieping Li, 2007. "Latent lifestyle preferences and household location decisions," Journal of Geographical Systems, Springer, vol. 9(1), pages 77-101, April.
    25. S. J. Pettit & A. K. C. Beresford, 2009. "Port development: from gateways to logistics hubs," Maritime Policy & Management, Taylor & Francis Journals, vol. 36(3), pages 253-267, June.
    26. Tsai, Ming-Chih & Lai, Kee-hung & Lloyd, Alison E. & Lin, Hung-Ju, 2012. "The dark side of logistics outsourcing – Unraveling the potential risks leading to failed relationships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 178-189.
    27. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    28. Piendl, Raphael & Liedtke, Gernot & Matteis, Tilman, 2017. "A logit model for shipment size choice with latent classes – Empirical findings for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 188-201.
    29. Tongzon, Jose L., 2009. "Port choice and freight forwarders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 186-195, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johannes Rentschler & Ralf Elbert & Felix Weber, 2022. "Promoting Sustainability through Synchromodal Transportation: A Systematic Literature Review and Future Fields of Research," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    2. Pani, Agnivesh & Mishra, Sabya & Sahu, Prasanta, 2022. "Developing multi-vehicle freight trip generation models quantifying the relationship between logistics outsourcing and insourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    3. Ahmed, Usman & Roorda, Matthew J., 2022. "Modelling carrier type and vehicle type choice of small and medium size firms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    4. Khakdaman, Masoud & Rezaei, Jafar & Tavasszy, Lóránt, 2022. "Shippers’ willingness to use flexible transportation services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 1-20.
    5. Sakti, Sekar & Zhang, Lele & Thompson, Russell G., 2023. "Synchronization in synchromodality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    6. Vitalii Naumov & Olha Shulika & Oleksandra Orda & Hanna Vasiutina & Marek Bauer & Myroslav Oliskevych, 2022. "Shaping the Optimal Technology for Servicing the Long-Distance Deliveries of Packaged Cargo by Road Transport," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    7. Wang, Zhenjie & Zhang, Dezhi & Tavasszy, Lóránt & Fazi, Stefano, 2023. "Integrated multimodal freight service network design and pricing with a competing service integrator and heterogeneous shipper classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    8. Chunjiao Shao & Haiyan Wang & Meng Yu, 2022. "Multi-Objective Optimization of Customer-Centered Intermodal Freight Routing Problem Based on the Combination of DRSA and NSGA-III," Sustainability, MDPI, vol. 14(5), pages 1-25, March.
    9. Zhang, Yimeng & Li, Xinlei & van Hassel, Edwin & Negenborn, Rudy R. & Atasoy, Bilge, 2022. "Synchromodal transport planning considering heterogeneous and vague preferences of shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    10. Verena Maria Stockhammer & Sarah Pfoser & Karin Markvica & Jürgen Zajicek & Matthias Prandtstetter, 2021. "Behavioural Biases Distorting the Demand for Environmentally Friendly Freight Transport Modes: An Overview and Potential Measures," Sustainability, MDPI, vol. 13(21), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khakdaman, Masoud & Rezaei, Jafar & Tavasszy, Lóránt, 2022. "Shippers’ willingness to use flexible transportation services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 1-20.
    2. Román, Concepción & Arencibia, Ana Isabel & Feo-Valero, María, 2017. "A latent class model with attribute cut-offs to analyze modal choice for freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 212-227.
    3. Zhou, Heng & Norman, Richard & Xia, Jianhong(Cecilia) & Hughes, Brett & Kelobonye, Keone & Nikolova, Gabi & Falkmer, Torbjorn, 2020. "Analysing travel mode and airline choice using latent class modelling: A case study in Western Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 187-205.
    4. Vega, Amaya & Feo-Valero, Maria & Espino-Espino, Raquel, 2018. "The potential impact of Brexit on Ireland's demand for shipping services to continental Europe," Transport Policy, Elsevier, vol. 71(C), pages 1-13.
    5. Günay, Gürkan, 2023. "Shipment size and vehicle choice modeling for road freight transport: A geographical perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    6. Wen, Chieh-Hua & Wang, Wei-Chung & Fu, Chiang, 2012. "Latent class nested logit model for analyzing high-speed rail access mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 545-554.
    7. Hurtubia, Ricardo & Nguyen, My Hang & Glerum, Aurélie & Bierlaire, Michel, 2014. "Integrating psychometric indicators in latent class choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 135-146.
    8. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    9. Sanjana Hossain & Md. Sami Hasnine & Khandker Nurul Habib, 2021. "A latent class joint mode and departure time choice model for the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 48(3), pages 1217-1239, June.
    10. Zhang, Rong & Zhu, Lichao, 2019. "Threshold incorporating freight choice modeling for hinterland leg transportation chain of export containers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 858-872.
    11. Xuemei Fu & Zhicai Juan, 2017. "Accommodating preference heterogeneity in commuting mode choice: an empirical investigation in Shaoxing, China," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 434-448, May.
    12. Larranaga, Ana Margarita & Arellana, Julian & Senna, Luiz Afonso, 2017. "Encouraging intermodality: A stated preference analysis of freight mode choice in Rio Grande do Sul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 202-211.
    13. Tao, Xuezong & Zhu, Lichao, 2020. "Meta-analysis of value of time in freight transportation: A comprehensive review based on discrete choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 213-233.
    14. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    15. Kim, Sung Hoo & Mokhtarian, Patricia L., 2018. "Taste heterogeneity as an alternative form of endogeneity bias: Investigating the attitude-moderated effects of built environment and socio-demographics on vehicle ownership using latent class modelin," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 130-150.
    16. Tomás Rossetti & Verónica Saud & Ricardo Hurtubia, 2019. "I want to ride it where I like: measuring design preferences in cycling infrastructure," Transportation, Springer, vol. 46(3), pages 697-718, June.
    17. Arencibia, Ana Isabel & Feo-Valero, María & García-Menéndez, Leandro & Román, Concepción, 2015. "Modelling mode choice for freight transport using advanced choice experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 252-267.
    18. Vega, Amaya & Feo-Valero, Maria & Espino-Espino, Raquel, 2021. "Understanding maritime transport route choice among Irish exporters: A latent class approach," Research in Transportation Economics, Elsevier, vol. 90(C).
    19. Martínez-Moya, Julián & Feo-Valero, María, 2022. "Do shippers’ characteristics influence port choice criteria? Capturing heterogeneity by using latent class models," Transport Policy, Elsevier, vol. 116(C), pages 96-105.
    20. Verena Maria Stockhammer & Sarah Pfoser & Karin Markvica & Jürgen Zajicek & Matthias Prandtstetter, 2021. "Behavioural Biases Distorting the Demand for Environmentally Friendly Freight Transport Modes: An Overview and Potential Measures," Sustainability, MDPI, vol. 13(21), pages 1-34, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:141:y:2020:i:c:s1366554520306785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.