IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v21y2021i3d10.1007_s11067-021-09536-7.html
   My bibliography  Save this article

A Game Theoretical Approach for Improving the Operational Efficiencies of Less-than-truckload Carriers Through Load Exchanges

Author

Listed:
  • Baṣak Altan

    (Ozyegin University)

  • Okan Örsan Özener

    (Ozyegin University)

Abstract

Less-than-truckload (LTL) transportation offers fast, flexible and relatively low-cost transportation services to shippers. In order to cope with the effects of economic recessions, the LTL industry implemented ideas such as reducing excess capacity and increasing revenues through better yield management. In this paper, we extend these initiatives beyond the reach of individual carriers and propose a collaborative framework that facilitates load exchanges to reduce the operational costs. Even though collective solutions are proven to provide benefits to the participants by reducing the inefficiencies using a system-wide perspective, such solutions are often not attainable in real-life as the negotiating parties are seeking to maximize their individual profits rather than the overall profit and also they are unwilling to share confidential information. Therefore, a mechanism that enables collaboration among the carriers should account for the rationality of the individual participants and should require minimal information transfer between participants. Having this in mind, we propose a mechanism that facilities collaboration through a series of load exchange iterations and identifies an equilibrium among selfish carriers with limited information transfer among the participants. Our time-efficient mechanism can handle large instances with thousands of loads as well as provide significant benefits over the non-collaborative management of LTL networks.

Suggested Citation

  • Baṣak Altan & Okan Örsan Özener, 2021. "A Game Theoretical Approach for Improving the Operational Efficiencies of Less-than-truckload Carriers Through Load Exchanges," Networks and Spatial Economics, Springer, vol. 21(3), pages 547-579, September.
  • Handle: RePEc:kap:netspa:v:21:y:2021:i:3:d:10.1007_s11067-021-09536-7
    DOI: 10.1007/s11067-021-09536-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-021-09536-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-021-09536-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Tamannaei & Hamid Zarei & Sajede Aminzadegan, 2021. "A Game-Theoretic Approach to the Freight Transportation Pricing Problem in the Presence of Intermodal Service Providers in a Competitive Market," Networks and Spatial Economics, Springer, vol. 21(1), pages 123-173, March.
    2. Wang, Xin & Kopfer, Herbert & Gendreau, Michel, 2014. "Operational transportation planning of freight forwarding companies in horizontal coalitions," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1133-1141.
    3. Zhang, Bo & Yao, Tao & Friesz, Terry L. & Sun, Yuqi, 2015. "A tractable two-stage robust winner determination model for truckload service procurement via combinatorial auctions," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 16-31.
    4. Margaretha Gansterer & Richard F. Hartl, 2018. "Centralized bundle generation in auction-based collaborative transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 613-635, July.
    5. Yossi Sheffi, 2004. "Combinatorial Auctions in the Procurement of Transportation Services," Interfaces, INFORMS, vol. 34(4), pages 245-252, August.
    6. Yilmaz, Ozhan & Savasaneril, Secil, 2012. "Collaboration among small shippers in a transportation market," European Journal of Operational Research, Elsevier, vol. 218(2), pages 408-415.
    7. Simone Caschili & Francesca Medda & Francesco Parola & Claudio Ferrari, 2014. "An Analysis of Shipping Agreements: The Cooperative Container Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 357-377, December.
    8. Stein, Oliver & Sudermann-Merx, Nathan, 2018. "The noncooperative transportation problem and linear generalized Nash games," European Journal of Operational Research, Elsevier, vol. 266(2), pages 543-553.
    9. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    10. Cruijssen, Frans & Borm, Peter & Fleuren, Hein & Hamers, Herbert, 2010. "Supplier-initiated outsourcing: A methodology to exploit synergy in transportation," European Journal of Operational Research, Elsevier, vol. 207(2), pages 763-774, December.
    11. José Carbajal & Alan Erera & Martin Savelsbergh, 2013. "Balancing fleet size and repositioning costs in LTL trucking," Annals of Operations Research, Springer, vol. 203(1), pages 235-254, March.
    12. Zhou, Guanghui & Hui, Yer Van & Liang, Liang, 2011. "Strategic alliance in freight consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(1), pages 18-29, January.
    13. Lyu, Xiaohui & Chen, Haoxun & Wang, Nengmin & Yang, Zhen, 2019. "A multi-round exchange mechanism for carrier collaboration in less than truckload transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 38-59.
    14. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    15. Okan Örsan Özener & Özlem Ergun & Martin Savelsbergh, 2011. "Lane-Exchange Mechanisms for Truckload Carrier Collaboration," Transportation Science, INFORMS, vol. 45(1), pages 1-17, February.
    16. Okan Örsan Özener & Özlem Ergun, 2008. "Allocating Costs in a Collaborative Transportation Procurement Network," Transportation Science, INFORMS, vol. 42(2), pages 146-165, May.
    17. Huang, George Q. & Xu, Su Xiu, 2013. "Truthful multi-unit transportation procurement auctions for logistics e-marketplaces," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 127-148.
    18. Tyan, Jonah C. & Wang, Fu-Kwun & Du, Timon C., 2003. "An evaluation of freight consolidation policies in global third party logistics," Omega, Elsevier, vol. 31(1), pages 55-62, February.
    19. Berger, Susanne & Bierwirth, Christian, 2010. "Solutions to the request reassignment problem in collaborative carrier networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 627-638, September.
    20. Chen, Haoxun, 2016. "Combinatorial clock-proxy exchange for carrier collaboration in less than truck load transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 152-172.
    21. Ahmad I. Jarrah & Ellis Johnson & Lucas C. Neubert, 2009. "Large-Scale, Less-than-Truckload Service Network Design," Operations Research, INFORMS, vol. 57(3), pages 609-625, June.
    22. Friesz, Terry L. & Mookherjee, Reetabrata & Holguín-Veras, José & Rigdon, Matthew A., 2008. "Dynamic pricing in an urban freight environment," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 305-324, May.
    23. Lorenzo Castelli & Giovanni Longo & Raffaele Pesenti & Walter Ukovich, 2004. "Two-Player Noncooperative Games over a Freight Transportation Network," Transportation Science, INFORMS, vol. 38(2), pages 149-159, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Xiaohui & Chen, Haoxun & Wang, Nengmin & Yang, Zhen, 2019. "A multi-round exchange mechanism for carrier collaboration in less than truckload transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 38-59.
    2. Lafkihi, Mariam & Pan, Shenle & Ballot, Eric, 2019. "Freight transportation service procurement: A literature review and future research opportunities in omnichannel E-commerce," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 348-365.
    3. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    4. Nassim Mrabti & Nadia Hamani & Laurent Delahoche, 2022. "A Comprehensive Literature Review on Sustainable Horizontal Collaboration," Sustainability, MDPI, vol. 14(18), pages 1-38, September.
    5. Lai, Minghui & Cai, Xiaoqiang & Hu, Qian, 2017. "An iterative auction for carrier collaboration in truckload pickup and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 60-80.
    6. Gansterer, Margaretha & Hartl, Richard F., 2018. "Collaborative vehicle routing: A survey," European Journal of Operational Research, Elsevier, vol. 268(1), pages 1-12.
    7. Gansterer, Margaretha & Hartl, Richard F. & Savelsbergh, Martin, 2020. "The value of information in auction-based carrier collaborations," International Journal of Production Economics, Elsevier, vol. 221(C).
    8. Jun Li & Xiaoqiang Cai & Yinlian Zeng, 2016. "Cost allocation for less-than-truckload collaboration among perishable product retailers," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 81-117, January.
    9. Gansterer, Margaretha & Hartl, Richard F. & Sörensen, Kenneth, 2020. "Pushing frontiers in auction-based transport collaborations," Omega, Elsevier, vol. 94(C).
    10. Minghui Lai & Weili Xue & Qian Hu, 2019. "An Ascending Auction for Freight Forwarder Collaboration in Capacity Sharing," Transportation Science, INFORMS, vol. 53(4), pages 1175-1195, July.
    11. Lai, Minghui & Cai, Xiaoqiang & Li, Xiang, 2017. "Mechanism design for collaborative production-distribution planning with shipment consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 137-159.
    12. Chabot, Thomas & Bouchard, Florence & Legault-Michaud, Ariane & Renaud, Jacques & Coelho, Leandro C., 2018. "Service level, cost and environmental optimization of collaborative transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 1-14.
    13. Yu, Hao & Huang, Min & Chao, Xiuli & Yue, Xiaohang, 2022. "Truthful multi-attribute multi-unit double auctions for B2B e-commerce logistics service transactions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    14. Su Xiu Xu & George Q. Huang & Meng Cheng, 2017. "Truthful, Budget-Balanced Bundle Double Auctions for Carrier Collaboration," Transportation Science, INFORMS, vol. 51(4), pages 1365-1386, November.
    15. Kong, Xiang T.R. & Kang, Kai & Zhong, Ray Y. & Luo, Hao & Xu, Su Xiu, 2021. "Cyber physical system-enabled on-demand logistics trading," International Journal of Production Economics, Elsevier, vol. 233(C).
    16. Baozhuang Niu & Jingmai Wang & Carman K. M. Lee & Lei Chen, 2019. "“Product + logistics” bundling sale and co-delivery in cross-border e-commerce," Electronic Commerce Research, Springer, vol. 19(4), pages 915-941, December.
    17. Kimms, A. & Kozeletskyi, I., 2016. "Core-based cost allocation in the cooperative traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 910-916.
    18. R. Jothi Basu & Nachiappan Subramanian & Angappa Gunasekaran & P. L. K. Palaniappan, 2017. "Influence of non-price and environmental sustainability factors on truckload procurement process," Annals of Operations Research, Springer, vol. 250(2), pages 363-388, March.
    19. Hammami, Farouk & Rekik, Monia & Coelho, Leandro C., 2019. "Exact and heuristic solution approaches for the bid construction problem in transportation procurement auctions with a heterogeneous fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 150-177.
    20. Zolfagharinia, Hossein & Haughton, Michael, 2016. "Effective truckload dispatch decision methods with incomplete advance load information," European Journal of Operational Research, Elsevier, vol. 252(1), pages 103-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:21:y:2021:i:3:d:10.1007_s11067-021-09536-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.