IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v38y2004i2p149-159.html
   My bibliography  Save this article

Two-Player Noncooperative Games over a Freight Transportation Network

Author

Listed:
  • Lorenzo Castelli

    (DEEI, Università degli Studi di Trieste, via A. Valerio 10, 34127 Trieste, Italy)

  • Giovanni Longo

    (DIC, Università degli Studi di Trieste, p.le Europa 1, 34127 Trieste, Italy)

  • Raffaele Pesenti

    (DINFO, Università degli Studi di Palermo, v.le delle Scienze, 90128 Palermo, Italy)

  • Walter Ukovich

    (DEEI, Università degli Studi di Trieste, via A. Valerio 10, 34127 Trieste, Italy)

Abstract

A game between two players acting on the same road transportation network is considered in this paper. The first player aims at minimizing the transportation costs, whereas the second player aims at maximizing her profit (or, in general, her utility) that is proportional to the flow passing through the arcs under her control. We introduce bilevel linear programming formulations for this problem. We derive conditions of existence and properties of the equilibrium points and propose an algorithm finding a local optimal solution. Finally, we present an application of the model to a real system involving trucks travelling through Europe from a Middle Eastern country.

Suggested Citation

  • Lorenzo Castelli & Giovanni Longo & Raffaele Pesenti & Walter Ukovich, 2004. "Two-Player Noncooperative Games over a Freight Transportation Network," Transportation Science, INFORMS, vol. 38(2), pages 149-159, May.
  • Handle: RePEc:inm:ortrsc:v:38:y:2004:i:2:p:149-159
    DOI: 10.1287/trsc.1030.0072
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1030.0072
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1030.0072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wayne F. Bialas & Mark H. Karwan, 1984. "Two-Level Linear Programming," Management Science, INFORMS, vol. 30(8), pages 1004-1020, August.
    2. Bell, Michael G. H., 2000. "A game theory approach to measuring the performance reliability of transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 533-545, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrice Marcotte & Anne Mercier & Gilles Savard & Vedat Verter, 2009. "Toll Policies for Mitigating Hazardous Materials Transport Risk," Transportation Science, INFORMS, vol. 43(2), pages 228-243, May.
    2. Baṣak Altan & Okan Örsan Özener, 2021. "A Game Theoretical Approach for Improving the Operational Efficiencies of Less-than-truckload Carriers Through Load Exchanges," Networks and Spatial Economics, Springer, vol. 21(3), pages 547-579, September.
    3. Marco Migliore & Salvatore Amoroso & Valeria Cardaci & Mario Catalano, 2011. "The role of passenger modal shift nodes in the interaction between land use and transport system," ERSA conference papers ersa10p1606, European Regional Science Association.
    4. Moreno-Quintero, Eric & Fowkes, Tony & Watling, David, 2013. "Modelling planner–carrier interactions in road freight transport: Optimisation of road maintenance costs via overloading control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 68-83.
    5. Baglioni, Laura & Calabrese, Armando & Ghiron, Nathan Levialdi, 2013. "Net neutrality at internet backbone provider level," 24th European Regional ITS Conference, Florence 2013 88506, International Telecommunications Society (ITS).
    6. Yaron Hollander & Joseph Prashker, 2006. "The applicability of non-cooperative game theory in transport analysis," Transportation, Springer, vol. 33(5), pages 481-496, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    2. Hadas, Yuval & Gnecco, Giorgio & Sanguineti, Marcello, 2017. "An approach to transportation network analysis via transferable utility games," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 120-143.
    3. Agustín Santos & Antonio Fernández Anta & Luis López Fernández, 2013. "Quid Pro Quo: A Mechanism for Fair Collaboration in Networked Systems," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-15, September.
    4. Ge Gao & Huijun Sun & Jianjun Wu, 2019. "Activity-based trip chaining behavior analysis in the network under the parking fee scheme," Transportation, Springer, vol. 46(3), pages 647-669, June.
    5. C. Audet & G. Savard & W. Zghal, 2007. "New Branch-and-Cut Algorithm for Bilevel Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 353-370, August.
    6. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    7. Dadkar, Yashoda & Nozick, Linda & Jones, Dean, 2010. "Optimizing facility use restrictions for the movement of hazardous materials," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 267-281, February.
    8. Hu Shao & William Lam & Mei Tam, 2006. "A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes under Uncertainty in Demand," Networks and Spatial Economics, Springer, vol. 6(3), pages 173-204, September.
    9. Reilly, Allison & Nozick, Linda & Xu, Ningxiong & Jones, Dean, 2012. "Game theory-based identification of facility use restrictions for the movement of hazardous materials under terrorist threat," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 115-131.
    10. Sinha, Ankur & Malo, Pekka & Deb, Kalyanmoy, 2017. "Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping," European Journal of Operational Research, Elsevier, vol. 257(2), pages 395-411.
    11. Cao, Dong & Chen, Mingyuan, 2006. "Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach," European Journal of Operational Research, Elsevier, vol. 169(1), pages 97-110, February.
    12. Lin, XuXun & Yuan, PengCheng, 2018. "A dynamic parking charge optimal control model under perspective of commuters’ evolutionary game behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1096-1110.
    13. Rajesh S. Prabhu Gaonkar & V. Mariappan, 0. "Transportation time reliability appraisal in maritime context," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-11.
    14. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    15. Cao, D. & Leung, L. C., 2002. "A partial cooperation model for non-unique linear two-level decision problems," European Journal of Operational Research, Elsevier, vol. 140(1), pages 134-141, July.
    16. Sinha, Surabhi & Sinha, S. B., 2002. "KKT transformation approach for multi-objective multi-level linear programming problems," European Journal of Operational Research, Elsevier, vol. 143(1), pages 19-31, November.
    17. Ng, ManWo & Waller, S. Travis, 2010. "A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1202-1219, December.
    18. Calvete, Herminia I. & Gale, Carmen, 1999. "The bilevel linear/linear fractional programming problem," European Journal of Operational Research, Elsevier, vol. 114(1), pages 188-197, April.
    19. Bard, Jonathan F. & Plummer, John & Claude Sourie, Jean, 2000. "A bilevel programming approach to determining tax credits for biofuel production," European Journal of Operational Research, Elsevier, vol. 120(1), pages 30-46, January.
    20. Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:38:y:2004:i:2:p:149-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.