IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v114y1999i1p188-197.html
   My bibliography  Save this article

The bilevel linear/linear fractional programming problem

Author

Listed:
  • Calvete, Herminia I.
  • Gale, Carmen

Abstract

No abstract is available for this item.

Suggested Citation

  • Calvete, Herminia I. & Gale, Carmen, 1999. "The bilevel linear/linear fractional programming problem," European Journal of Operational Research, Elsevier, vol. 114(1), pages 188-197, April.
  • Handle: RePEc:eee:ejores:v:114:y:1999:i:1:p:188-197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(98)00078-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wayne F. Bialas & Mark H. Karwan, 1984. "Two-Level Linear Programming," Management Science, INFORMS, vol. 30(8), pages 1004-1020, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calvete, Herminia I. & Gale, Carmen, 2004. "A note on `bilevel linear fractional programming problem'," European Journal of Operational Research, Elsevier, vol. 152(1), pages 296-299, January.
    2. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Audet & G. Savard & W. Zghal, 2007. "New Branch-and-Cut Algorithm for Bilevel Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 353-370, August.
    2. Cao, Dong & Chen, Mingyuan, 2006. "Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach," European Journal of Operational Research, Elsevier, vol. 169(1), pages 97-110, February.
    3. Sinha, Surabhi & Sinha, S. B., 2002. "KKT transformation approach for multi-objective multi-level linear programming problems," European Journal of Operational Research, Elsevier, vol. 143(1), pages 19-31, November.
    4. Kuo, R.J. & Lee, Y.H. & Zulvia, Ferani E. & Tien, F.C., 2015. "Solving bi-level linear programming problem through hybrid of immune genetic algorithm and particle swarm optimization algorithm," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1013-1026.
    5. Dariush Akbarian, 2020. "Overall profit Malmquist productivity index under data uncertainty," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-20, December.
    6. G. Hibino & M. Kainuma & Y. Matsuoka & T. Morita, 1996. "Two-level Mathematical Programming for Analyzing Subsidy Options to Reduce Greenhouse-Gas Emissions," Working Papers wp96129, International Institute for Applied Systems Analysis.
    7. Wen, U. P. & Huang, A. D., 1996. "A simple Tabu Search method to solve the mixed-integer linear bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 563-571, February.
    8. I. Nishizaki & M. Sakawa, 1999. "Stackelberg Solutions to Multiobjective Two-Level Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 161-182, October.
    9. Liu, Shaonan & Kong, Nan & Parikh, Pratik & Wang, Mingzheng, 2023. "Optimal trauma care network redesign with government subsidy: A bilevel integer programming approach," Omega, Elsevier, vol. 119(C).
    10. Budnitzki, Alina, 2014. "Computation of the optimal tolls on the traffic network," European Journal of Operational Research, Elsevier, vol. 235(1), pages 247-251.
    11. Bo Zeng, 2020. "A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1128-1142, October.
    12. Syed Mohd Muneeb & Ahmad Yusuf Adhami & Zainab Asim & Syed Aqib Jalil, 2019. "Bi-level decision making models for advertising allocation problem under fuzzy environment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 160-172, April.
    13. Pramanik, Surapati & Roy, Tapan Kumar, 2007. "Fuzzy goal programming approach to multilevel programming problems," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1151-1166, January.
    14. Syed Aqib Jalil & Shakeel Javaid & Syed Mohd Muneeb, 2018. "A decentralized multi-level decision making model for solid transportation problem with uncertainty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1022-1033, October.
    15. Sakawa, Masatoshi & Nishizaki, Ichiro & Uemura, Yoshio, 2002. "A decentralized two-level transportation problem in a housing material manufacturer: Interactive fuzzy programming approach," European Journal of Operational Research, Elsevier, vol. 141(1), pages 167-185, August.
    16. Fontaine, Pirmin & Minner, Stefan, 2014. "Benders Decomposition for Discrete–Continuous Linear Bilevel Problems with application to traffic network design," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 163-172.
    17. H. I. Calvete & C. Galé, 1998. "On the Quasiconcave Bilevel Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 613-622, September.
    18. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    19. Sinha, Ankur & Malo, Pekka & Deb, Kalyanmoy, 2017. "Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping," European Journal of Operational Research, Elsevier, vol. 257(2), pages 395-411.
    20. Cao, D. & Leung, L. C., 2002. "A partial cooperation model for non-unique linear two-level decision problems," European Journal of Operational Research, Elsevier, vol. 140(1), pages 134-141, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:114:y:1999:i:1:p:188-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.