IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v109y2018icp331-355.html
   My bibliography  Save this article

The importance of considering non-linear layover and delay costs for local truckers

Author

Listed:
  • Zolfagharinia, Hossein
  • Haughton, Michael

Abstract

Adopting a time-discretization method, we propose an iterative algorithm that solves a series of integer programming models to effectively handle non-linear costs in the trucking industry. The numerical analysis illustrates the importance of acknowledging nonlinear costs in improving the operational performance of local carriers specifically under the following conditions: (a) limited advance load information, (b) high load density, and (c) high traffic imbalance. This improvement can reach an average of 8.5% when subcontracting cost is high. Furthermore, we statistically analyze the impact of various factors (e.g., traffic imbalance) on the performance of a carrier with nonlinear costs.

Suggested Citation

  • Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
  • Handle: RePEc:eee:transe:v:109:y:2018:i:c:p:331-355
    DOI: 10.1016/j.tre.2017.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554516308821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2017.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 14(2), pages 130-154, May.
    2. Cheung, Bernard K.-S. & Choy, K.L. & Li, Chung-Lun & Shi, Wenzhong & Tang, Jian, 2008. "Dynamic routing model and solution methods for fleet management with mobile technologies," International Journal of Production Economics, Elsevier, vol. 113(2), pages 694-705, June.
    3. Wang, Xiubin & Regan, Amelia C., 2002. "Local truckload pickup and delivery with hard time window constraints," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 97-112, February.
    4. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    5. Lindsey, Christopher & Mahmassani, Hani S., 2017. "Sourcing truckload capacity in the transportation spot market: A framework for third party providers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 261-273.
    6. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    7. Triki, Chefi & Oprea, Simona & Beraldi, Patriza & Crainic, Teodor Gabriel, 2014. "The stochastic bid generation problem in combinatorial transportation auctions," European Journal of Operational Research, Elsevier, vol. 236(3), pages 991-999.
    8. Hugo P. Simão & Jeff Day & Abraham P. George & Ted Gifford & John Nienow & Warren B. Powell, 2009. "An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application," Transportation Science, INFORMS, vol. 43(2), pages 178-197, May.
    9. Tjokroamidjojo, Darsono & Kutanoglu, Erhan & Taylor, G. Don, 2006. "Quantifying the value of advance load information in truckload trucking," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(4), pages 340-357, July.
    10. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    11. Hu, Wuhua & Mao, Jianfeng & Wei, Keji, 2017. "Energy-efficient rail guided vehicle routing for two-sided loading/unloading automated freight handling system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 943-957.
    12. Leif H. Appelgren, 1969. "A Column Generation Algorithm for a Ship Scheduling Problem," Transportation Science, INFORMS, vol. 3(1), pages 53-68, February.
    13. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2009. "Robust Optimization for Empty Repositioning Problems," Operations Research, INFORMS, vol. 57(2), pages 468-483, April.
    14. Hall, Randolph W., 1999. "Stochastic freight flow patterns: implications for fleet optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 449-465, August.
    15. Yilmaz, Ozhan & Savasaneril, Secil, 2012. "Collaboration among small shippers in a transportation market," European Journal of Operational Research, Elsevier, vol. 218(2), pages 408-415.
    16. Gronalt, Manfred & Hartl, Richard F. & Reimann, Marc, 2003. "New savings based algorithms for time constrained pickup and delivery of full truckloads," European Journal of Operational Research, Elsevier, vol. 151(3), pages 520-535, December.
    17. Pinar Keskinocak & Sridhar Tayur, 1998. "Scheduling of Time-Shared Jet Aircraft," Transportation Science, INFORMS, vol. 32(3), pages 277-294, August.
    18. Zolfagharinia, Hossein & Haughton, Michael, 2014. "The benefit of advance load information for truckload carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 34-54.
    19. Vergara, Hector A. & Root, Sarah, 2013. "Mixed fleet dispatching in truckload relay network design optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 32-49.
    20. Mitrovic-Minic, Snezana & Krishnamurti, Ramesh & Laporte, Gilbert, 2004. "Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 669-685, September.
    21. Jula, Hossein & Dessouky, Maged & Ioannou, Petros & Chassiakos, Anastasios, 2005. "Container movement by trucks in metropolitan networks: modeling and optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(3), pages 235-259, May.
    22. Juliana M. Nascimento & Warren B. Powell, 2009. "An Optimal Approximate Dynamic Programming Algorithm for the Lagged Asset Acquisition Problem," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 210-237, February.
    23. Linos F. Frantzeskakis & Warren B. Powell, 1990. "A Successive Linear Approximation Procedure for Stochastic, Dynamic Vehicle Allocation Problems," Transportation Science, INFORMS, vol. 24(1), pages 40-57, February.
    24. Powell, Warren B., 1987. "An operational planning model for the dynamic vehicle allocation problem with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 21(3), pages 217-232, June.
    25. Zolfagharinia, Hossein & Haughton, Michael A., 2017. "Operational flexibility in the truckload trucking industry," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 437-460.
    26. Zolfagharinia, Hossein & Haughton, Michael, 2016. "Effective truckload dispatch decision methods with incomplete advance load information," European Journal of Operational Research, Elsevier, vol. 252(1), pages 103-121.
    27. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    28. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, II: Multiperiod Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 40-54, February.
    29. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    30. Ferland, Jacques A. & Fortin, Luc, 1989. "Vehicles scheduling with sliding time windows," European Journal of Operational Research, Elsevier, vol. 38(2), pages 213-226, January.
    31. Sundararajan Arunapuram & Kamlesh Mathur & Daniel Solow, 2003. "Vehicle Routing and Scheduling with Full Truckloads," Transportation Science, INFORMS, vol. 37(2), pages 170-182, May.
    32. Barış Ata & Tava Lennon Olsen, 2009. "Near-Optimal Dynamic Lead-Time Quotation and Scheduling Under Convex-Concave Customer Delay Costs," Operations Research, INFORMS, vol. 57(3), pages 753-768, June.
    33. Özkaya, Evren & Keskinocak, PInar & Roshan Joseph, V. & Weight, Ryan, 2010. "Estimating and benchmarking Less-than-Truckload market rates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 667-682, September.
    34. Warren B. Powell & Michael T. Towns & Arun Marar, 2000. "On the Value of Optimal Myopic Solutions for Dynamic Routing and Scheduling Problems in the Presence of User Noncompliance," Transportation Science, INFORMS, vol. 34(1), pages 67-85, February.
    35. Chang, Tsung-Sheng, 2009. "Decision support for truckload carriers in one-shot combinatorial auctions," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 522-541, June.
    36. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    37. Warren B. Powell, 1986. "A Stochastic Model of the Dynamic Vehicle Allocation Problem," Transportation Science, INFORMS, vol. 20(2), pages 117-129, May.
    38. Wang, Xin & Kopfer, Herbert & Gendreau, Michel, 2014. "Operational transportation planning of freight forwarding companies in horizontal coalitions," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1133-1141.
    39. Philipp Afèche & Opher Baron & Yoav Kerner, 2013. "Pricing Time-Sensitive Services Based on Realized Performance," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 492-506, July.
    40. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
    41. Caballini, Claudia & Sacone, Simona & Saeednia, Mahnam, 2016. "Cooperation among truck carriers in seaport containerized transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 38-56.
    42. Warren B. Powell, 1996. "A Stochastic Formulation of the Dynamic Assignment Problem, with an Application to Truckload Motor Carriers," Transportation Science, INFORMS, vol. 30(3), pages 195-219, August.
    43. Warren B. Powell & Yosef Sheffi & Kenneth S. Nickerson & Kevin Butterbaugh & Susan Atherton, 1988. "Maximizing Profits for North American Van Lines' Truckload Division: A New Framework for Pricing and Operations," Interfaces, INFORMS, vol. 18(1), pages 21-41, February.
    44. Stenger, Andreas & Schneider, Michael & Schwind, Michael & Vigo, Daniele, 2012. "Location routing for small package shippers with subcontracting options," International Journal of Production Economics, Elsevier, vol. 140(2), pages 702-712.
    45. Desaulniers, Guy & Lavigne, June & Soumis, Francois, 1998. "Multi-depot vehicle scheduling problems with time windows and waiting costs," European Journal of Operational Research, Elsevier, vol. 111(3), pages 479-494, December.
    46. Ozlem Ergun & Gultekin Kuyzu & Martin Savelsbergh, 2007. "Reducing Truckload Transportation Costs Through Collaboration," Transportation Science, INFORMS, vol. 41(2), pages 206-221, May.
    47. Christophe Duhamel & Jean-Yves Potvin & Jean-Marc Rousseau, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows," Transportation Science, INFORMS, vol. 31(1), pages 49-59, February.
    48. Scott, Alex, 2015. "The value of information sharing for truckload shippers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 203-214.
    49. Okan Örsan Özener & Özlem Ergun & Martin Savelsbergh, 2011. "Lane-Exchange Mechanisms for Truckload Carrier Collaboration," Transportation Science, INFORMS, vol. 45(1), pages 1-17, February.
    50. Okan Örsan Özener & Özlem Ergun, 2008. "Allocating Costs in a Collaborative Transportation Procurement Network," Transportation Science, INFORMS, vol. 42(2), pages 146-165, May.
    51. Berger, Susanne & Bierwirth, Christian, 2010. "Solutions to the request reassignment problem in collaborative carrier networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 627-638, September.
    52. Arthur J. Swersey & Wilson Ballard, 1984. "Scheduling School Buses," Management Science, INFORMS, vol. 30(7), pages 844-853, July.
    53. Stenger, A. & Schneider, M. & Schwind, M. & Vigo, D., 2012. "Location Routing for Small Package Shippers with Subcontracting Options," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62387, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tosarkani, Babak Mohamadpour & Amin, Saman Hassanzadeh & Zolfagharinia, Hossein, 2020. "A scenario-based robust possibilistic model for a multi-objective electronic reverse logistics network," International Journal of Production Economics, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zolfagharinia, Hossein & Haughton, Michael A., 2017. "Operational flexibility in the truckload trucking industry," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 437-460.
    2. Zolfagharinia, Hossein & Haughton, Michael, 2016. "Effective truckload dispatch decision methods with incomplete advance load information," European Journal of Operational Research, Elsevier, vol. 252(1), pages 103-121.
    3. Zolfagharinia, Hossein & Haughton, Michael, 2014. "The benefit of advance load information for truckload carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 34-54.
    4. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    5. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    6. Miguel Andres Figliozzi & Hani S. Mahmassani & Patrick Jaillet, 2007. "Pricing in Dynamic Vehicle Routing Problems," Transportation Science, INFORMS, vol. 41(3), pages 302-318, August.
    7. Baris Yildiz & Martin Savelsbergh, 2019. "Provably High-Quality Solutions for the Meal Delivery Routing Problem," Transportation Science, INFORMS, vol. 53(5), pages 1372-1388, September.
    8. Lai, Minghui & Cai, Xiaoqiang & Hu, Qian, 2017. "An iterative auction for carrier collaboration in truckload pickup and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 60-80.
    9. Farzaneh Karami & Wim Vancroonenburg & Greet Vanden Berghe, 2020. "A periodic optimization approach to dynamic pickup and delivery problems with time windows," Journal of Scheduling, Springer, vol. 23(6), pages 711-731, December.
    10. Acocella, Angela & Caplice, Chris & Sheffi, Yossi, 2020. "Elephants or goldfish?: An empirical analysis of carrier reciprocity in dynamic freight markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    11. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    12. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    13. Nassim Mrabti & Nadia Hamani & Laurent Delahoche, 2022. "A Comprehensive Literature Review on Sustainable Horizontal Collaboration," Sustainability, MDPI, vol. 14(18), pages 1-38, September.
    14. Baṣak Altan & Okan Örsan Özener, 2021. "A Game Theoretical Approach for Improving the Operational Efficiencies of Less-than-truckload Carriers Through Load Exchanges," Networks and Spatial Economics, Springer, vol. 21(3), pages 547-579, September.
    15. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    16. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    17. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    18. Srour, F.J. & Agatz, N.A.H. & Oppen, J., 2014. "The Value of Inaccurate Advance Time Window Information in a Pick-up and Delivery Problem," ERIM Report Series Research in Management ERS-2014-002-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    20. Hammami, Farouk & Rekik, Monia & Coelho, Leandro C., 2019. "Exact and heuristic solution approaches for the bid construction problem in transportation procurement auctions with a heterogeneous fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 150-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:109:y:2018:i:c:p:331-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.