IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v32y1998i3p277-294.html
   My bibliography  Save this article

Scheduling of Time-Shared Jet Aircraft

Author

Listed:
  • Pinar Keskinocak

    (Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213)

  • Sridhar Tayur

    (Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213)

Abstract

Motivated by a real application, we consider the following aircraft scheduling problem. At any time, the aircraft are at different locations or are serving a customer and new customer requests arrive, each consisting of a departure location, departure time, and destination. Our objective is to satify these requests (by subcontracting extra aircraft if necessary) at minimum cost under additional constraints of maintenance requirements and previously scheduled trips. We show that the jet aircraft scheduling problem is NP complete and discuss three special cases. We show that the second and third special cases are also NP complete. We provide a polynomial time network flow based algorithm for the first special case and a pseudo-polynomial time dynamic programming algorithm for the second special case. We formulate the problem as a 0–1 integer program and observe that most small and medium size problems can be solved by Cplex. For larger and difficult instances, we provide a fast heuristic with good performance.

Suggested Citation

  • Pinar Keskinocak & Sridhar Tayur, 1998. "Scheduling of Time-Shared Jet Aircraft," Transportation Science, INFORMS, vol. 32(3), pages 277-294, August.
  • Handle: RePEc:inm:ortrsc:v:32:y:1998:i:3:p:277-294
    DOI: 10.1287/trsc.32.3.277
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.32.3.277
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.32.3.277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Avishai Ceder & Helman I. Stern, 1981. "Deficit Function Bus Scheduling with Deadheading Trip Insertions for Fleet Size Reduction," Transportation Science, INFORMS, vol. 15(4), pages 338-363, November.
    2. Kolen, Antoon W. J. & Kroon, Leo G., 1991. "On the computational complexity of (maximum) class scheduling," European Journal of Operational Research, Elsevier, vol. 54(1), pages 23-38, September.
    3. Kolen, Antoon W. J. & Kroon, Leo G., 1993. "On the computational complexity of (maximum) shift class scheduling," European Journal of Operational Research, Elsevier, vol. 64(1), pages 138-151, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chris Martin & David Jones & Pinar Keskinocak, 2003. "Optimizing On-Demand Aircraft Schedules for Fractional Aircraft Operators," Interfaces, INFORMS, vol. 33(5), pages 22-35, October.
    2. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    3. D. Espinoza & R. Garcia & M. Goycoolea & G. L. Nemhauser & M. W. P. Savelsbergh, 2008. "Per-Seat, On-Demand Air Transportation Part I: Problem Description and an Integer Multicommodity Flow Model," Transportation Science, INFORMS, vol. 42(3), pages 263-278, August.
    4. Munari, Pedro & Alvarez, Aldair, 2019. "Aircraft routing for on-demand air transportation with service upgrade and maintenance events: Compact model and case study," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 75-84.
    5. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    6. Wei Yang & Itır Karaesmen & Pınar Keskinocak & Sridhar Tayur, 2008. "Aircraft and crew scheduling for fractional ownership programs," Annals of Operations Research, Springer, vol. 159(1), pages 415-431, March.
    7. Zolfagharinia, Hossein & Haughton, Michael, 2014. "The benefit of advance load information for truckload carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 34-54.
    8. Zolfagharinia, Hossein & Haughton, Michael, 2016. "Effective truckload dispatch decision methods with incomplete advance load information," European Journal of Operational Research, Elsevier, vol. 252(1), pages 103-121.
    9. Zolfagharinia, Hossein & Haughton, Michael A., 2017. "Operational flexibility in the truckload trucking industry," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 437-460.
    10. Sridhar Tayur, 2017. "OM Forum—An Essay on Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 526-533, October.
    11. Richard Hicks & Richard Madrid & Chris Milligan & Robert Pruneau & Mike Kanaley & Yvan Dumas & Benoit Lacroix & Jacques Desrosiers & François Soumis, 2005. "Bombardier Flexjet Significantly Improves Its Fractional Aircraft Ownership Operations," Interfaces, INFORMS, vol. 35(1), pages 49-60, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kroon, Leo G. & Edwin Romeijn, H. & Zwaneveld, Peter J., 1997. "Routing trains through railway stations: complexity issues," European Journal of Operational Research, Elsevier, vol. 98(3), pages 485-498, May.
    2. Antoon W.J. Kolen & Jan Karel Lenstra & Christos H. Papadimitriou & Frits C.R. Spieksma, 2007. "Interval scheduling: A survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 530-543, August.
    3. José Carbajal & Alan Erera & Martin Savelsbergh, 2013. "Balancing fleet size and repositioning costs in LTL trucking," Annals of Operations Research, Springer, vol. 203(1), pages 235-254, March.
    4. Kulkarni, Sarang & Krishnamoorthy, Mohan & Ranade, Abhiram & Ernst, Andreas T. & Patil, Rahul, 2018. "A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 457-487.
    5. Kroon, Leo G. & Salomon, Marc & Van Wassenhove, Luk N., 1995. "Exact and approximation algorithms for the operational fixed interval scheduling problem," European Journal of Operational Research, Elsevier, vol. 82(1), pages 190-205, April.
    6. Ozdamar, Linet & Birbil, Sevket Ilker, 1998. "Hybrid heuristics for the capacitated lot sizing and loading problem with setup times and overtime decisions," European Journal of Operational Research, Elsevier, vol. 110(3), pages 525-547, November.
    7. Chris Martin & David Jones & Pinar Keskinocak, 2003. "Optimizing On-Demand Aircraft Schedules for Fractional Aircraft Operators," Interfaces, INFORMS, vol. 33(5), pages 22-35, October.
    8. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    9. Liu, Tao & (Avi) Ceder, Avishai, 2017. "Deficit function related to public transport: 50 year retrospective, new developments, and prospects," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 1-19.
    10. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan, 2019. "Matching supply and demand in a sharing economy: Classification, computational complexity, and application," European Journal of Operational Research, Elsevier, vol. 278(2), pages 578-595.
    11. Kallrath, J. & Klosterhalfen, S.T. & Walter, M. & Fischer, G. & Blackburn, R., 2017. "Payload-based fleet optimization for rail cars in the chemical industry," European Journal of Operational Research, Elsevier, vol. 259(1), pages 113-129.
    12. Suman, Hemant & Larrain, Homero & Muñoz, Juan Carlos, 2021. "The impact of using a naïve approach in the limited-stop bus service design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 45-61.
    13. Di Martinelly, Christine & Meskens, Nadine, 2017. "A bi-objective integrated approach to building surgical teams and nurse schedule rosters to maximise surgical team affinities and minimise nurses' idle time," International Journal of Production Economics, Elsevier, vol. 191(C), pages 323-334.
    14. Cortés, Cristián E. & Jara-Díaz, Sergio & Tirachini, Alejandro, 2011. "Integrating short turning and deadheading in the optimization of transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 419-434, June.
    15. Türsel Eliiyi, Deniz & Azizoglu, Meral, 2011. "Heuristics for operational fixed job scheduling problems with working and spread time constraints," International Journal of Production Economics, Elsevier, vol. 132(1), pages 107-121, July.
    16. Bojovic, Nebojsa J., 2002. "A general system theory approach to rail freight car fleet sizing," European Journal of Operational Research, Elsevier, vol. 136(1), pages 136-172, January.
    17. Stern, Helman I. & Gertsbakh, Ilya B., 2019. "Using deficit functions for aircraft fleet routing," Operations Research Perspectives, Elsevier, vol. 6(C).
    18. Chen, Jingxu & Liu, Zhiyuan & Zhu, Senlai & Wang, Wei, 2015. "Design of limited-stop bus service with capacity constraint and stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 1-15.
    19. Twan Dollevoet & Dennis Huisman & Leo Kroon & Marie Schmidt & Anita Schöbel, 2015. "Delay Management Including Capacities of Stations," Transportation Science, INFORMS, vol. 49(2), pages 185-203, May.
    20. Kovalyov, Mikhail Y. & Ng, C.T. & Cheng, T.C. Edwin, 2007. "Fixed interval scheduling: Models, applications, computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 178(2), pages 331-342, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:32:y:1998:i:3:p:277-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.