IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v18y2018i2d10.1007_s11067-017-9348-z.html
   My bibliography  Save this article

Dynamic Accessibility using Big Data: The Role of the Changing Conditions of Network Congestion and Destination Attractiveness

Author

Listed:
  • Borja Moya-Gómez

    (Universidad Complutense de Madrid (UCM))

  • María Henar Salas-Olmedo

    (Universidad Complutense de Madrid (UCM))

  • Juan Carlos García-Palomares

    (Universidad Complutense de Madrid (UCM))

  • Javier Gutiérrez

    (Universidad Complutense de Madrid (UCM))

Abstract

Accessibility is essentially a dynamic concept. However, most studies on urban accessibility take a static approach, overlooking the fact that accessibility conditions change dramatically throughout the day. Due to their high spatial and temporal resolution, the new data sources (Big Data) offer new possibilities for the study of accessibility. The aim of this paper is to analyse urban accessibility considering its two components –the performance of the transport network and the attractiveness of the destinations– using a dynamic approach using data from TomTom and Twitter respectively. This allows us to obtain profiles that highlight the daily variations in accessibility in the city of Madrid, and identify the influence of congestion and the changes in location of the population. These profiles reveal significant variations according to transport zones. Each transport zone has its own accessibility profile, and thus its own specific problems, which require solutions that are also specific.

Suggested Citation

  • Borja Moya-Gómez & María Henar Salas-Olmedo & Juan Carlos García-Palomares & Javier Gutiérrez, 2018. "Dynamic Accessibility using Big Data: The Role of the Changing Conditions of Network Congestion and Destination Attractiveness," Networks and Spatial Economics, Springer, vol. 18(2), pages 273-290, June.
  • Handle: RePEc:kap:netspa:v:18:y:2018:i:2:d:10.1007_s11067-017-9348-z
    DOI: 10.1007/s11067-017-9348-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-017-9348-z
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-017-9348-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dewulf, Bart & Neutens, Tijs & Vanlommel, Mario & Logghe, Steven & De Maeyer, Philippe & Witlox, Frank & De Weerdt, Yves & Van de Weghe, Nico, 2015. "Examining commuting patterns using Floating Car Data and circular statistics: Exploring the use of new methods and visualizations to study travel times," Journal of Transport Geography, Elsevier, vol. 48(C), pages 41-51.
    2. Aura Reggiani & Pietro Bucci & Giovanni Russo, 2011. "Accessibility and Network Structures in the German Commuting," Networks and Spatial Economics, Springer, vol. 11(4), pages 621-641, December.
    3. Andrés Fielbaum & Sergio Jara-Diaz & Antonio Gschwender, 2017. "A Parametric Description of Cities for the Normative Analysis of Transport Systems," Networks and Spatial Economics, Springer, vol. 17(2), pages 343-365, June.
    4. Xianyuan Zhan & Satish Ukkusuri & Feng Zhu, 2014. "Inferring Urban Land Use Using Large-Scale Social Media Check-in Data," Networks and Spatial Economics, Springer, vol. 14(3), pages 647-667, December.
    5. Vandenbulcke, Grégory & Steenberghen, Thérèse & Thomas, Isabelle, 2009. "Mapping accessibility in Belgium: a tool for land-use and transport planning?," Journal of Transport Geography, Elsevier, vol. 17(1), pages 39-53.
    6. David Martin & Hannah Jordan & Paul Roderick, 2008. "Taking the Bus: Incorporating Public Transport Timetable Data into Health Care Accessibility Modelling," Environment and Planning A, , vol. 40(10), pages 2510-2525, October.
    7. Sweet, Matthias N., 2014. "Do firms flee traffic congestion?," Journal of Transport Geography, Elsevier, vol. 35(C), pages 40-49.
    8. Anthony Chen & Chao Yang & Sirisak Kongsomsaksakul & Ming Lee, 2007. "Network-based Accessibility Measures for Vulnerability Analysis of Degradable Transportation Networks," Networks and Spatial Economics, Springer, vol. 7(3), pages 241-256, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Sun & Yulin Chang & Yuji Shi & Lin Cheng & Jie Ma, 2019. "Subnetwork Origin-Destination Matrix Estimation Under Travel Demand Constraints," Networks and Spatial Economics, Springer, vol. 19(4), pages 1123-1142, December.
    2. Mansour, Shawky & Alahmadi, Mohammed & Abulibdeh, Ammar, 2022. "Spatial assessment of audience accessibility to historical monuments and museums in Qatar during the 2022 FIFA World Cup," Transport Policy, Elsevier, vol. 127(C), pages 116-129.
    3. Yun Xiang & Chengcheng Xu & Weijie Yu & Shuyi Wang & Xuedong Hua & Wei Wang, 2019. "Investigating Dominant Trip Distance for Intercity Passenger Transport Mode Using Large-Scale Location-Based Service Data," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    4. Hu, Yujie & Downs, Joni, 2019. "Measuring and visualizing place-based space-time job accessibility," Journal of Transport Geography, Elsevier, vol. 74(C), pages 278-288.
    5. Shixiong Jiang & Wei Guan & Zhengbing He & Liu Yang, 2018. "Measuring Taxi Accessibility Using Grid-Based Method with Trajectory Data," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    6. Yujie Hu & Joni Downs, 2020. "Measuring and Visualizing Place-Based Space-Time Job Accessibility," Papers 2006.00268, arXiv.org.
    7. Tao, Sui & Cheng, Long & He, Sylvia & Witlox, Frank, 2023. "Examining the non-linear effects of transit accessibility on daily trip duration: A focus on the low-income population," Journal of Transport Geography, Elsevier, vol. 109(C).
    8. F. Crawford & D. P. Watling & R. D. Connors, 2023. "Analysing Spatial Intrapersonal Variability of Road Users Using Point-to-Point Sensor Data," Networks and Spatial Economics, Springer, vol. 23(2), pages 373-406, June.
    9. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    10. Tianlu Qian & Zheng Fu & Jie Chen & Shujie Qin & Changbai Xi & Jiechen Wang, 2023. "Evaluating multiscale and multimodal transport inequalities in Chinese cities with massive open-source path data," Journal of Geographical Systems, Springer, vol. 25(2), pages 237-264, April.
    11. Igor Lazov, 2019. "A Methodology for Revenue Analysis of Parking Lots," Networks and Spatial Economics, Springer, vol. 19(1), pages 177-198, March.
    12. Bimpou, Konstantina & Ferguson, Neil S., 2020. "Dynamic accessibility: Incorporating day-to-day travel time reliability into accessibility measurement," Journal of Transport Geography, Elsevier, vol. 89(C).
    13. Jianhua Ni & Jie Chen & Zheng Fu & Changbai Xi & Jiechen Wang, 2023. "Examining Commercial Center Accessibility Using a Modified 2SFCA method in Realistic Networks in Nanjing, China," Networks and Spatial Economics, Springer, vol. 23(4), pages 1025-1045, December.
    14. Panrawee Rungskunroch & Yuwen Yang & Sakdirat Kaewunruen, 2020. "Does High-Speed Rail Influence Urban Dynamics and Land Pricing?," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    15. Wang, Yafei & Chen, Bi Yu & Yuan, Hui & Wang, Donggen & Lam, William H.K. & Li, Qingquan, 2018. "Measuring temporal variation of location-based accessibility using space-time utility perspective," Journal of Transport Geography, Elsevier, vol. 73(C), pages 13-24.
    16. Jang, Seongman & Lee, Seungil, 2020. "Study of the regional accessibility calculation by income class based on utility-based accessibility," Journal of Transport Geography, Elsevier, vol. 84(C).
    17. Gutiérrez, Antonio, 2022. "Movilidad urbana y datos de alta frecuencia [Urban mobility and high frequency data]," MPRA Paper 114854, University Library of Munich, Germany.
    18. Amparo Moyano & Marcin Stępniak & Borja Moya-Gómez & Juan Carlos García-Palomares, 2021. "Traffic congestion and economic context: changes of spatiotemporal patterns of traffic travel times during crisis and post-crisis periods," Transportation, Springer, vol. 48(6), pages 3301-3324, December.
    19. Willberg, Elias & Fink, Christoph & Toivonen, Tuuli, 2023. "The 15-minute city for all? – Measuring individual and temporal variations in walking accessibility," Journal of Transport Geography, Elsevier, vol. 106(C).
    20. Linlin Liu & Bohong Zheng & Chen Luo & Komi Bernard Bedra & Francis Masrabaye, 2022. "Access to City Center: Automobile vs. Public Transit," IJERPH, MDPI, vol. 19(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beria, Paolo & Debernardi, Andrea & Ferrara, Emanuele, 2017. "Measuring the long-distance accessibility of Italian cities," Journal of Transport Geography, Elsevier, vol. 62(C), pages 66-79.
    2. Dominik Ziemke & Johan W. Joubert & Kai Nagel, 2018. "Accessibility in a Post-Apartheid City: Comparison of Two Approaches for Accessibility Computations," Networks and Spatial Economics, Springer, vol. 18(2), pages 241-271, June.
    3. Páez, Antonio & Scott, Darren M. & Morency, Catherine, 2012. "Measuring accessibility: positive and normative implementations of various accessibility indicators," Journal of Transport Geography, Elsevier, vol. 25(C), pages 141-153.
    4. Langford, M. & Higgs, G. & Fry, R., 2012. "Using floating catchment analysis (FCA) techniques to examine intra-urban variations in accessibility to public transport opportunities: the example of Cardiff, Wales," Journal of Transport Geography, Elsevier, vol. 25(C), pages 1-14.
    5. Moya-Gómez, Borja & García-Palomares, Juan Carlos, 2017. "The impacts of congestion on automobile accessibility. What happens in large European cities?," Journal of Transport Geography, Elsevier, vol. 62(C), pages 148-159.
    6. Nir Kaplan & Itzhak Omer, 2022. "Multiscale Accessibility—A New Perspective of Space Structuration," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    7. Verhetsel, Ann & Vanelslander, Thierry, 2010. "What location policy can bring to sustainable commuting: an empirical study in Brussels and Flanders, Belgium," Journal of Transport Geography, Elsevier, vol. 18(6), pages 691-701.
    8. Cartenì, Armando & Pariota, Luigi & Henke, Ilaria, 2017. "Hedonic value of high-speed rail services: Quantitative analysis of the students’ domestic tourist attractiveness of the main Italian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 348-365.
    9. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    10. Naqavi, Fatemeh & Sundberg, Marcus & Västberg, Oskar Blom & Karlström, Anders & Hugosson, Muriel Beser, 2023. "Mobility constraints and accessibility to work: Application to Stockholm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    11. Siva Srikukenthiran & Amer Shalaby, 2017. "Enabling large-scale transit microsimulation for disruption response support using the Nexus platform," Public Transport, Springer, vol. 9(1), pages 411-435, July.
    12. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    13. Maria Teresa Borzacchiello & Peter Nijkamp & Eric Koomen, 2010. "Accessibility and Urban Development: A Grid-Based Comparative Statistical Analysis of Dutch Cities," Environment and Planning B, , vol. 37(1), pages 148-169, February.
    14. Seungkyu Ryu & Anthony Chen & Xiangdong Xu & Keechoo Choi, 2014. "A Dual Approach for Solving the Combined Distribution and Assignment Problem with Link Capacity Constraints," Networks and Spatial Economics, Springer, vol. 14(2), pages 245-270, June.
    15. Jenelius, Erik, 2010. "User inequity implications of road network vulnerability," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 57-73.
    16. Verhetsel, Ann & Thomas, Isabelle & Beelen, Marjan, 2010. "Commuting in Belgian metropolitan areas: The power of the Alonso-Muth model," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 109-131.
    17. Yang Yang & Ruizhen He & Guohang Tian & Zhen Shi & Xinyu Wang & Albert Fekete, 2022. "Equity Study on Urban Park Accessibility Based on Improved 2SFCA Method in Zhengzhou, China," Land, MDPI, vol. 11(11), pages 1-17, November.
    18. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    19. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    20. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:18:y:2018:i:2:d:10.1007_s11067-017-9348-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.