IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3187-d168101.html
   My bibliography  Save this article

Measuring Taxi Accessibility Using Grid-Based Method with Trajectory Data

Author

Listed:
  • Shixiong Jiang

    (MOE Key Laboratory Urban Transportation Complex System Theory and Technology, Beijing Jiaotong University, Beijing 100044, China)

  • Wei Guan

    (MOE Key Laboratory Urban Transportation Complex System Theory and Technology, Beijing Jiaotong University, Beijing 100044, China)

  • Zhengbing He

    (College of Metropolitan Transportation, Beijing University of Technology, Beijing 100044, China)

  • Liu Yang

    (MOE Key Laboratory Urban Transportation Complex System Theory and Technology, Beijing Jiaotong University, Beijing 100044, China)

Abstract

Accessibility has drawn extensive attention from city planners and transportation researchers for decades. With the benefits of large-scale and varying time, this study aims to combine the taxi global positioning system (GPS) data with a cumulative opportunity measure to calculate taxi accessibility in Beijing, China. As traffic conditions vary significantly over time and space, we select four typical time periods and introduce a grid-based method to divide the study area into grid cells. Both the GPS signals and opportunities that include the constant points of interest, total drop-offs, and dynamic drop-offs, are aggregated in these grid cells. The cumulative opportunity measure counts all reachable grid cells within the given travel time threshold, along with the corresponding opportunities. The results demonstrate that the accessibility varies in the four time periods, with better performance seen in the late-night hours. Although the spatial distributions of the three kinds of opportunities are different, these accessibilities show great similarity. In addition, the relative accessibilities of different measures are highly correlated. In general, grid cells with higher accessibilities in one time period are likely to also have higher accessibilities in other time periods. Moreover, the results suggest that taxi accessibility can be measured from its trajectory data only.

Suggested Citation

  • Shixiong Jiang & Wei Guan & Zhengbing He & Liu Yang, 2018. "Measuring Taxi Accessibility Using Grid-Based Method with Trajectory Data," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3187-:d:168101
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Qingquan & Zhang, Tong & Wang, Handong & Zeng, Zhe, 2011. "Dynamic accessibility mapping using floating car data: a network-constrained density estimation approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 379-393.
    2. Borja Moya-Gómez & María Henar Salas-Olmedo & Juan Carlos García-Palomares & Javier Gutiérrez, 2018. "Dynamic Accessibility using Big Data: The Role of the Changing Conditions of Network Congestion and Destination Attractiveness," Networks and Spatial Economics, Springer, vol. 18(2), pages 273-290, June.
    3. Yu, Biying & Ma, Ye & Xue, Meimei & Tang, Baojun & Wang, Bin & Yan, Jinyue & Wei, Yi-Ming, 2017. "Environmental benefits from ridesharing: A case of Beijing," Applied Energy, Elsevier, vol. 191(C), pages 141-152.
    4. Wachs, Martin & Kumagai, T. Gordon, 1973. "Physical accessibility as a social indicator," Socio-Economic Planning Sciences, Elsevier, vol. 7(5), pages 437-456, October.
    5. Boisjoly, Geneviève & El-Geneidy, Ahmed, 2016. "Daily fluctuations in transit and job availability: A comparative assessment of time-sensitive accessibility measures," Journal of Transport Geography, Elsevier, vol. 52(C), pages 73-81.
    6. Owen, Andrew & Levinson, David M., 2015. "Modeling the commute mode share of transit using continuous accessibility to jobs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 110-122.
    7. Bertolini, L. & le Clercq, F. & Kapoen, L., 2005. "Sustainable accessibility: a conceptual framework to integrate transport and land use plan-making. Two test-applications in the Netherlands and a reflection on the way forward," Transport Policy, Elsevier, vol. 12(3), pages 207-220, May.
    8. Cui, JianXun & Liu, Feng & Janssens, Davy & An, Shi & Wets, Geert & Cools, Mario, 2016. "Detecting urban road network accessibility problems using taxi GPS data," Journal of Transport Geography, Elsevier, vol. 51(C), pages 147-157.
    9. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    10. Foth, Nicole & Manaugh, Kevin & El-Geneidy, Ahmed M., 2013. "Towards equitable transit: examining transit accessibility and social need in Toronto, Canada, 1996–2006," Journal of Transport Geography, Elsevier, vol. 29(C), pages 1-10.
    11. Li, Meng & Jia, Yinghao & Shen, Zuojun & He, Fang, 2017. "Improving the electrification rate of the vehicle miles traveled in Beijing: A data-driven approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 106-120.
    12. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    13. Saghapour, Tayebeh & Moridpour, Sara & Thompson, Russell G., 2016. "Public transport accessibility in metropolitan areas: A new approach incorporating population density," Journal of Transport Geography, Elsevier, vol. 54(C), pages 273-285.
    14. Widener, Michael J. & Farber, Steven & Neutens, Tijs & Horner, Mark, 2015. "Spatiotemporal accessibility to supermarkets using public transit: an interaction potential approach in Cincinnati, Ohio," Journal of Transport Geography, Elsevier, vol. 42(C), pages 72-83.
    15. Páez, Antonio & Scott, Darren M. & Morency, Catherine, 2012. "Measuring accessibility: positive and normative implementations of various accessibility indicators," Journal of Transport Geography, Elsevier, vol. 25(C), pages 141-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuanxuan Xia & Kexin Lin & Yang Ding & Xianlei Dong & Huijun Sun & Beibei Hu, 2020. "Research on the Coupling Coordination Relationships between Urban Function Mixing Degree and Urbanization Development Level Based on Information Entropy," IJERPH, MDPI, vol. 18(1), pages 1-24, December.
    2. Fu, Xin & Xu, Chengyao & Liu, Yuteng & Chen, Chi-Hua & Hwang, F.J. & Wang, Jianwei, 2022. "Spatial heterogeneity and migration characteristics of traffic congestion—A quantitative identification method based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    3. Karimpour, Abolfazl & Hosseinzadeh, Aryan & Kluger, Robert, 2023. "A data-driven approach to estimating dockless electric scooter service areas," Journal of Transport Geography, Elsevier, vol. 109(C).
    4. Jie Xiong & Biao Chen & Xiangnan Li & Zhengbing He & Yanyan Chen, 2020. "Demand Responsive Service-based Optimization on Flexible Routes and Departure Time of Community Shuttles," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    5. Jincheng Wang & Qunqi Wu & Feng Mao & Yilong Ren & Zilin Chen & Yaqun Gao, 2021. "Influencing Factor Analysis and Demand Forecasting of Intercity Online Car-Hailing Travel," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    6. Tong Zhou & Xintao Liu & Zhen Qian & Haoxuan Chen & Fei Tao, 2019. "Dynamic Update and Monitoring of AOI Entrance via Spatiotemporal Clustering of Drop-Off Points," Sustainability, MDPI, vol. 11(23), pages 1-20, December.
    7. Hu, Beibei & Xia, Xuanxuan & Sun, Huijun & Dong, Xianlei, 2019. "Understanding the imbalance of the taxi market: From the high-quality customer’s perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    8. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    9. Amin Pujiati & Indri Murniawaty & Dyah Maya Nihayah & Innal Muarrifah & Nadia Damayanti, 2022. "A Simulated Policy towards Green Public Transportation in a Metropolitan in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 162-168, September.
    10. Huaming Xie & Tong Xu & Qianjiao Wu & Mengya Zhang & Ningning Tong & Ting Zhang, 2022. "Spatial and Economic Effects of Yangtze River-Huaihe River Water Transfer Project on the Transportation Accessibility of Bulk Cargo within Anhui Province, China," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    11. Aleksander Król & Małgorzata Król, 2019. "A Stochastic Simulation Model for the Optimization of the Taxi Management System," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    12. Zhang, Hui & Cui, Houdun & Wang, Wei & Song, Wenbo, 2020. "Properties of Chinese railway network: Multilayer structures based on timetable data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    13. Jairo Ortega & János Tóth & Tamás Péter, 2021. "A Comprehensive Model to Study the Dynamic Accessibility of the Park & Ride System," Sustainability, MDPI, vol. 13(7), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelobonye, Keone & Zhou, Heng & McCarney, Gary & Xia, Jianhong (Cecilia), 2020. "Measuring the accessibility and spatial equity of urban services under competition using the cumulative opportunities measure," Journal of Transport Geography, Elsevier, vol. 85(C).
    2. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    3. Merlin, Louis A. & Hu, Lingqian, 2017. "Does competition matter in measures of job accessibility? Explaining employment in Los Angeles," Journal of Transport Geography, Elsevier, vol. 64(C), pages 77-88.
    4. García-Albertos, Pedro & Picornell, Miguel & Salas-Olmedo, María Henar & Gutiérrez, Javier, 2019. "Exploring the potential of mobile phone records and online route planners for dynamic accessibility analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 294-307.
    5. Wang, Yafei & Chen, Bi Yu & Yuan, Hui & Wang, Donggen & Lam, William H.K. & Li, Qingquan, 2018. "Measuring temporal variation of location-based accessibility using space-time utility perspective," Journal of Transport Geography, Elsevier, vol. 73(C), pages 13-24.
    6. Stępniak, Marcin & Pritchard, John P. & Geurs, Karst T. & Goliszek, Sławomir, 2019. "The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland," Journal of Transport Geography, Elsevier, vol. 75(C), pages 8-24.
    7. Xu, Wangtu (Ato) & Li, Yongling & Wang, Hui, 2016. "Transit accessibility for commuters considering the demand elasticities of distance and transfer," Journal of Transport Geography, Elsevier, vol. 56(C), pages 138-156.
    8. Boisjoly, Geneviève & El-Geneidy, Ahmed M., 2017. "The insider: A planners' perspective on accessibility," Journal of Transport Geography, Elsevier, vol. 64(C), pages 33-43.
    9. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    10. Moyano, Amparo & Martínez, Héctor S. & Coronado, José M., 2018. "From network to services: A comparative accessibility analysis of the Spanish high-speed rail system," Transport Policy, Elsevier, vol. 63(C), pages 51-60.
    11. Ryan, Jean & Pereira, Rafael H.M. & Andersson, Magnus, 2023. "Accessibility and space-time differences in when and how different groups (choose to) travel," Journal of Transport Geography, Elsevier, vol. 111(C).
    12. Fayyaz, S. Kiavash & Liu, Xiaoyue Cathy & Porter, Richard J., 2017. "Dynamic transit accessibility and transit gap causality analysis," Journal of Transport Geography, Elsevier, vol. 59(C), pages 27-39.
    13. Moya-Gómez, Borja & García-Palomares, Juan Carlos, 2017. "The impacts of congestion on automobile accessibility. What happens in large European cities?," Journal of Transport Geography, Elsevier, vol. 62(C), pages 148-159.
    14. Boisjoly, Geneviève & El-Geneidy, Ahmed, 2016. "Daily fluctuations in transit and job availability: A comparative assessment of time-sensitive accessibility measures," Journal of Transport Geography, Elsevier, vol. 52(C), pages 73-81.
    15. Mansour, Shawky & Alahmadi, Mohammed & Abulibdeh, Ammar, 2022. "Spatial assessment of audience accessibility to historical monuments and museums in Qatar during the 2022 FIFA World Cup," Transport Policy, Elsevier, vol. 127(C), pages 116-129.
    16. Yadan Yan & Tianzhao Guo & Dongwei Wang, 2021. "Dynamic Accessibility Analysis of Urban Road-to-Freeway Interchanges Based on Navigation Map Paths," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    17. Boisjoly, Geneviève & El-Geneidy, Ahmed M., 2017. "How to get there? A critical assessment of accessibility objectives and indicators in metropolitan transportation plans," Transport Policy, Elsevier, vol. 55(C), pages 38-50.
    18. Cervero, Robert, 2005. "Accessible Cities and Regions: A Framework for Sustainable Transport and Urbanism in the 21st Century," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt27g2q0cx, Institute of Transportation Studies, UC Berkeley.
    19. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    20. Eizaguirre-Iribar, Arritokieta & Etxepare Igiñiz, Lauren & Hernández-Minguillón, Rufino Javier, 2016. "A multilevel approach of non-motorised accessibility in disused railway systems: The case-study of the Vasco-Navarro railway," Journal of Transport Geography, Elsevier, vol. 57(C), pages 35-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3187-:d:168101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.