IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7029-d834121.html
   My bibliography  Save this article

Spatial and Economic Effects of Yangtze River-Huaihe River Water Transfer Project on the Transportation Accessibility of Bulk Cargo within Anhui Province, China

Author

Listed:
  • Huaming Xie

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
    Institute of Remote Sensing and Geographic Information Systems, Anhui Jianzhu University, Hefei 230601, China)

  • Tong Xu

    (School of Architecture & Urban Planning, Anhui Jianzhu University, Hefei 230601, China)

  • Qianjiao Wu

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
    Institute of Remote Sensing and Geographic Information Systems, Anhui Jianzhu University, Hefei 230601, China)

  • Mengya Zhang

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Ningning Tong

    (School of Architecture & Urban Planning, Anhui Jianzhu University, Hefei 230601, China)

  • Ting Zhang

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
    Institute of Remote Sensing and Geographic Information Systems, Anhui Jianzhu University, Hefei 230601, China)

Abstract

This study examined the influence of the Yangtze River-Huaihe River Water Transfer Project (YHWTP) on the transportation accessibility of bulk cargo in 16 cities of Anhui Province based on modern transportation infrastructure. We also discussed the change in the strength of economic linkages affected by the YHWTP for 16 cities within Anhui Province and the Yangtze River Delta using the gravity model. The results demonstrate that: (1) The YHWTP will significantly improve the transportation accessibility of bulk commodities among the 16 cities in Anhui Province, especially the cities along the project route. It will reduce the minimum average transport cost (MATC) and the weighted average transport cost (WATC). (2) The YHWTP has a different influence on the transportation accessibility of the 16 cities, making the location conditions more unequal. (3) The change of spatial distribution of transportation accessibility of the 16 cities caused by YHWTP will be mainly concentrated in the triangular region, formed by Huainan, Anqing, and Wuhu. (4) The YHWTP will improve the total strength of economic linkages (TSEL) of the 16 cities within Anhui Province and Yangtze River Delta (YRD) region, with an increase by 27.62% and 9.04%, respectively. (5) Overall, Hefei will benefit the most from the YHWTP.

Suggested Citation

  • Huaming Xie & Tong Xu & Qianjiao Wu & Mengya Zhang & Ningning Tong & Ting Zhang, 2022. "Spatial and Economic Effects of Yangtze River-Huaihe River Water Transfer Project on the Transportation Accessibility of Bulk Cargo within Anhui Province, China," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7029-:d:834121
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7029/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7029/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farber, Steven & Bartholomew, Keith & Li, Xiao & Páez, Antonio & Nurul Habib, Khandker M., 2014. "Assessing social equity in distance based transit fares using a model of travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 291-303.
    2. Kim, Hyojin & Sultana, Selima, 2015. "The impacts of high-speed rail extensions on accessibility and spatial equity changes in South Korea from 2004 to 2018," Journal of Transport Geography, Elsevier, vol. 45(C), pages 48-61.
    3. Li, Xijing & Huang, Bo & Li, Rongrong & Zhang, Yipei, 2016. "Exploring the impact of high speed railways on the spatial redistribution of economic activities - Yangtze River Delta urban agglomeration as a case study," Journal of Transport Geography, Elsevier, vol. 57(C), pages 194-206.
    4. Atienza, Miguel & Lufin, Marcelo & Soto, Juan, 2021. "Mining linkages in the Chilean copper supply network and regional economic development," Resources Policy, Elsevier, vol. 70(C).
    5. Head, Keith & Mayer, Thierry & Ries, John, 2010. "The erosion of colonial trade linkages after independence," Journal of International Economics, Elsevier, vol. 81(1), pages 1-14, May.
    6. Meijuan Hu & Suleman Sarwar & Zaijun Li, 2021. "Spatio-Temporal Differentiation Mode and Threshold Effect of Yangtze River Delta Urban Ecological Well-Being Performance Based on Network DEA," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    7. Jiarui Ren & Guangxiong Mao & Fei Zhang & Yuhang Wei, 2020. "Research on Investment Decision-Making in Waterway Engineering Based on the Hub Economic Index," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    8. Takuma Matsuda & Shinya Hanaoka & Tomoya Kawasaki, 2020. "Cost analysis of bulk cargo containerization," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(6), pages 736-755, August.
    9. Aris Christodoulou & Panayotis Christidis, 2019. "Measuring Cross-Border Road Accessibility in the European Union," Sustainability, MDPI, vol. 11(15), pages 1-18, July.
    10. Shixiong Jiang & Wei Guan & Zhengbing He & Liu Yang, 2018. "Measuring Taxi Accessibility Using Grid-Based Method with Trajectory Data," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    11. Shaw, Shih-Lung & Fang, Zhixiang & Lu, Shiwei & Tao, Ran, 2014. "Impacts of high speed rail on railroad network accessibility in China," Journal of Transport Geography, Elsevier, vol. 40(C), pages 112-122.
    12. Robin Gutting & Maria Gerhold & Stefanie Rößler, 2021. "Spatial Accessibility in Urban Regeneration Areas: A Population-Weighted Method Assessing the Social Amenity Provision," Urban Planning, Cogitatio Press, vol. 6(4), pages 189-201.
    13. Anna Karin Olsson, 2016. "Canals, rivers and lakes as experiencescapes - destination development based on strategic use of inland water," International Journal of Entrepreneurship and Small Business, Inderscience Enterprises Ltd, vol. 29(2), pages 217-243.
    14. Donald F Vitaliano, 2016. "Benefits and Costs of the Erie Canal: A New View," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 42(4), pages 581-593, September.
    15. Jiao, Jingjuan & Wang, Jiaoe & Zhang, Fangni & Jin, Fengjun & Liu, Wei, 2020. "Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China," Transport Policy, Elsevier, vol. 91(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weichen Liu & Jiaying Guo & Wei Wu & Youhui Cao, 2022. "The evolution of regional spatial structure influenced by passenger rail service: A case study of the Yangtze River Delta," Growth and Change, Wiley Blackwell, vol. 53(2), pages 651-679, June.
    2. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani, 2020. "A Systematic and Analytical Review of the Socioeconomic and Environmental Impact of the Deployed High-Speed Rail (HSR) Systems on the World," Papers 2003.04452, arXiv.org, revised Mar 2020.
    3. Huang, Ying & Xu, Wangtu (Ato), 2021. "Spatial and temporal heterogeneity of the impact of high-speed railway on urban economy: Empirical study of Chinese cities," Journal of Transport Geography, Elsevier, vol. 91(C).
    4. Zhang, Hui & Cui, Houdun & Wang, Wei & Song, Wenbo, 2020. "Properties of Chinese railway network: Multilayer structures based on timetable data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    5. Liu, Xueli & Jiang, Chunxia & Wang, Feng & Yao, Shujie, 2021. "The impact of high-speed railway on urban housing prices in China: A network accessibility perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 84-99.
    6. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    7. Tianlu Qian & Zheng Fu & Jie Chen & Shujie Qin & Changbai Xi & Jiechen Wang, 2023. "Evaluating multiscale and multimodal transport inequalities in Chinese cities with massive open-source path data," Journal of Geographical Systems, Springer, vol. 25(2), pages 237-264, April.
    8. Cavallaro, Federico & Bruzzone, Francesco & Nocera, Silvio, 2020. "Spatial and social equity implications for High-Speed Railway lines in Northern Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 327-340.
    9. Liu, Zhongmei & Zhu, A-Xing & Zhang, Wenxin & Ren, Mei, 2021. "An improved potential-based approach to measuring the daily accessibility of HSR," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 271-284.
    10. Tanaka, Koichi, 2023. "Impacts of the opening of the maglev railway on daily accessibility in Japan: A comparative analysis with that of the Shinkansen," Journal of Transport Geography, Elsevier, vol. 106(C).
    11. Li, Hui & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2021. "Policy analysis for high-speed rail in China: Evolution, evaluation, and expectation," Transport Policy, Elsevier, vol. 106(C), pages 37-53.
    12. Kim, Hyojin & Sultana, Selima & Weber, Joe, 2018. "A geographic assessment of the economic development impact of Korean high-speed rail stations," Transport Policy, Elsevier, vol. 66(C), pages 127-137.
    13. Yanyan Gao & Yongqing Nan & Shunfeng Song, 2022. "High‐speed rail and city tourism: Evidence from Tencent migration big data on two Chinese golden weeks," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1012-1036, September.
    14. Xiaomin Wang & Wenxin Zhang, 2019. "Efficiency and Spatial Equity Impacts of High-Speed Rail on the Central Plains Economic Region of China," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    15. Guojie Ma & Jinxing Hu & Riquan Zhang, 2023. "Spatial-Temporal Distribution and Coupling Relationship of High-Speed Railway and Economic Networks in Metropolitan Areas of China," Land, MDPI, vol. 12(6), pages 1-23, June.
    16. Liu, Liwen & Zhang, Ming, 2018. "High-speed rail impacts on travel times, accessibility, and economic productivity: A benchmarking analysis in city-cluster regions of China," Journal of Transport Geography, Elsevier, vol. 73(C), pages 25-40.
    17. Xu, Wangtu (Ato) & Zhou, Jiangping & Qiu, Guo, 2018. "China's high-speed rail network construction and planning over time: a network analysis," Journal of Transport Geography, Elsevier, vol. 70(C), pages 40-54.
    18. Shicheng Li & Jian Gong & Qinghai Deng & Tianyu Zhou, 2018. "Impacts of the Qinghai–Tibet Railway on Accessibility and Economic Linkage of the Third Pole," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    19. Xinyuan Wang & Daisheng Tang & Yahong Liu & Tao Bu, 2023. "The impact of high-speed railway on labor market between the North and South: evidence from China," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 71(2), pages 487-515, October.
    20. Gao, Deng & Li, Shicheng, 2022. "Spatiotemporal impact of railway network in the Qinghai-Tibet Plateau on accessibility and economic linkages during 1984–2030," Journal of Transport Geography, Elsevier, vol. 100(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7029-:d:834121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.