IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1511-d322060.html
   My bibliography  Save this article

Research on Investment Decision-Making in Waterway Engineering Based on the Hub Economic Index

Author

Listed:
  • Jiarui Ren

    (School of Urban and Environmental Sciences, Huaiyin Normal University, Huai’an 223300, China)

  • Guangxiong Mao

    (School of Urban and Environmental Sciences, Huaiyin Normal University, Huai’an 223300, China)

  • Fei Zhang

    (School of Urban and Environmental Sciences, Huaiyin Normal University, Huai’an 223300, China)

  • Yuhang Wei

    (Future H2O, Knowledge Enterprise Development, Arizona State University, Tempe, AZ 85281, USA
    R&D, Shandong Province Huai River Authority Water Consultancy, Jinan 250100, China)

Abstract

Due to the wide range of waterway engineering strategies, the government often has the view that investment in hardware (such as construction, equipment renewal, etc.) is more important than that in software (such as information systems, service concepts, etc.) in the investment decision-making of waterway engineering. Besides, some government departments lack a consideration of coordinated development among different industries, resulting in the waterway industry lagging behind other industries (such as expressways, high-speed railway, etc.). To facilitate a more balanced infrastructure investment, we create a novel index, the Hub Economic Index (HEI), by incorporating the theory of the hub economy into the investment decision-making of waterway engineering. HEI consists of two major criteria, tangible and intangible assets, further divided into 10 indices. In particular, investment allocation between tangible and intangible assets is evaluated for the four major reaches of the North Jiangsu Canal. Multiple years of HEI values for the water transport industry are calculated for trend analysis and comparison with other industries. The results show that (1) through the comparison between the calculated values of the HEI investment model and the actual investment, the deviation of the tangible investment is 2.8% lower, and that of the intangible hub investment is 7.2% higher, which is basically in line with the actual situation. At the same time, it promotes the development of software; and (2) through the variation trends in HEI for various industries from 2008 to 2018, the HEI values of the different industries in the transportation system show a trend of steady growth. This is basically consistent with China’s economic development trend, but also reflects the development gap between the different industries. The research results are of great significance to help the government to make investment decisions in different fields and industries. The investment based on HEI values will further promote the integrated development of the water transport industry and other industries.

Suggested Citation

  • Jiarui Ren & Guangxiong Mao & Fei Zhang & Yuhang Wei, 2020. "Research on Investment Decision-Making in Waterway Engineering Based on the Hub Economic Index," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1511-:d:322060
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Changmin & Zhang, Anming, 2014. "Effects of high-speed rail and airline cooperation under hub airport capacity constraint," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 33-49.
    2. Minhua Shao & Congcong Xie & Lijun Sun & Lijuan Jiang, 2019. "Optimal Layout of Static Guidance Information in Comprehensive Transportation Hubs Based on Passenger Pathfinding Behavior," Sustainability, MDPI, vol. 11(13), pages 1-21, July.
    3. Junn-Yuan Teng & Wen-Chih Huang & Maw-Cherng Lin, 2010. "Systematic budget allocation for transportation construction projects: a case in Taiwan," Transportation, Springer, vol. 37(2), pages 331-361, March.
    4. Bing Yu & Chi Zhang & Yunzhong Jiang & Yu Li & Huicheng Zhou, 2017. "Conjunctive use of Inter-Basin Transferred and Desalinated Water in a Multi-Source Water Supply System Based on Cost-Benefit Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(11), pages 3313-3328, September.
    5. Yifan Ding & Deshan Tang & Huichao Dai & Yuhang Wei, 2014. "Human-Water Harmony Index: A New Approach to Assess the Human Water Relationship," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1061-1077, March.
    6. Li-Ya Yao & Xin-Feng Xia & Li-Shan Sun, 2014. "Transfer Scheme Evaluation Model for a Transportation Hub based on Vectorial Angle Cosine," Sustainability, MDPI, vol. 6(7), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huaming Xie & Tong Xu & Qianjiao Wu & Mengya Zhang & Ningning Tong & Ting Zhang, 2022. "Spatial and Economic Effects of Yangtze River-Huaihe River Water Transfer Project on the Transportation Accessibility of Bulk Cargo within Anhui Province, China," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    2. Andrej David & Peter Mako & Jan Lizbetin & Patrik Bohm, 2021. "The Impact of an Environmental Way of Customer’s Thinking on a Range of Choice from Transport Routes in Maritime Transport," Sustainability, MDPI, vol. 13(3), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Rui & Johnson, Daniel & Zhao, Weiming & Nash, Chris, 2019. "Competition of airline and high-speed rail in terms of price and frequency: Empirical study from China," Transport Policy, Elsevier, vol. 78(C), pages 8-18.
    2. Gong, Zhenwei & Zhang, Fangni & Liu, Wei & Graham, Daniel J., 2023. "On the effects of airport capacity expansion under responsive airlines and elastic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 48-76.
    3. Su, Min & Luan, Weixin & Sun, Tianyao, 2019. "Effect of high-speed rail competition on airlines’ intertemporal price strategies," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    4. Chen, Xiaoyan & Liu, Yisheng, 2020. "Visualization analysis of high-speed railway research based on CiteSpace," Transport Policy, Elsevier, vol. 85(C), pages 1-17.
    5. Wang, Chunan & Jiang, Changmin & Zhang, Anming, 2021. "Effects of Airline Entry on High-Speed Rail," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 242-265.
    6. Wang, Chunan & Wang, Xiaoyu, 2019. "Airport congestion delays and airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 328-349.
    7. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    8. Cheng-Hua Yang & Huei-Ju Chen & Li-Chu Lin & Alastair M. Morrison, 2020. "The Analysis of Critical Success Factors for In-Town Check-In in Taiwan," Sustainability, MDPI, vol. 13(1), pages 1-20, December.
    9. Li, Hui & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2021. "Policy analysis for high-speed rail in China: Evolution, evaluation, and expectation," Transport Policy, Elsevier, vol. 106(C), pages 37-53.
    10. Avenali, Alessandro & Bracaglia, Valentina & D'Alfonso, Tiziana & Reverberi, Pierfrancesco, 2018. "Strategic formation and welfare effects of airline-high speed rail agreements," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 393-411.
    11. Min Su & Weixin Luan & Zeyang Li & Shulin Wan & Zhenchao Zhang, 2019. "Evolution and Determinants of an Air Transport Network: A Case Study of the Chinese Main Air Transport Network," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    12. Veronika Vaseková, 2022. "How do people in China perceive water? From health threat perception to environmental policy change," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(3), pages 627-645, September.
    13. Wang, Chunan & Wang, Xiaoyu, 2019. "Why do airlines prefer multi-hub networks?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 56-74.
    14. Achim I. Czerny & Anmin Zhang, 2015. "Single-Till versus Dual-Till Regulation of Airports," Tinbergen Institute Discussion Papers 15-049/VIII, Tinbergen Institute.
    15. Takebayashi, Mikio, 2021. "Workability of a multiple-gateway airport system with a high-speed rail network," Transport Policy, Elsevier, vol. 107(C), pages 61-71.
    16. Shao, Zeng-Zhen & Ma, Zu-Jun & Sheu, Jiuh-Biing & Gao, H. Oliver, 2018. "Evaluation of large-scale transnational high-speed railway construction priority in the belt and road region," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 117(C), pages 40-57.
    17. Jiang, Changmin & Wang, Chunan, 2021. "High-speed rail pricing: Implications for social welfare," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    18. Yuan, Yalong & Yang, Min & Feng, Tao & Ma, Yafeng & Ren, Yifeng & Ruan, Xinpei, 2022. "Heterogeneity in the transfer time of air-rail intermodal passengers based on ticket booking data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 533-552.
    19. Wang, Yixiao & Sun, Luoyi & Teunter, Ruud H. & Wu, Jianhong & Hua, Guowei, 2020. "Effects of introducing low-cost high-speed rail on air-rail competition: Modelling and numerical analysis for Paris-Marseille," Transport Policy, Elsevier, vol. 99(C), pages 145-162.
    20. Gu, Hongyi & Wan, Yulai, 2020. "Can entry of high-speed rail increase air traffic? Price competition, travel time difference and catchment expansion," Transport Policy, Elsevier, vol. 97(C), pages 55-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1511-:d:322060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.