IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v17y2017i4d10.1007_s11067-017-9359-9.html
   My bibliography  Save this article

Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network

Author

Listed:
  • Mohamad Darayi

    (University of Oklahoma)

  • Kash Barker

    (University of Oklahoma)

  • Joost R. Santos

    (The George Washington University)

Abstract

The multi-modal freight transportation network plays an important role in the economic vitality of states, regions, and the broader country. The functionality of this network is threatened by disruptive events that can disable the capacity of the network to enable flows of commodities in portions of nodes and links. This work integrates a multi-commodity network flow formulation with an economic interdependency model to quantify the multi-industry impacts of a disruption in the transportation network to ultimately measure and assess the importance of network components. The framework developed here can be used to measure the efficacy of strategies to reduce network vulnerability from the unique perspective of multi-industry impacts. The framework is illustrated with a case study considering the multi-modal freight transportation network consisting of inland waterways, railways, and interstate highways that connect the state of Oklahoma to surrounding states.

Suggested Citation

  • Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
  • Handle: RePEc:kap:netspa:v:17:y:2017:i:4:d:10.1007_s11067-017-9359-9
    DOI: 10.1007/s11067-017-9359-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-017-9359-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-017-9359-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H Jönsson & J Johansson & H Johansson, 2008. "Identifying critical components in technical infrastructure networks," Journal of Risk and Reliability, , vol. 222(2), pages 235-243, June.
    2. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    3. Knoop, Victor L. & Snelder, Maaike & van Zuylen, Henk J. & Hoogendoorn, Serge P., 2012. "Link-level vulnerability indicators for real-world networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 843-854.
    4. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    5. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    6. Alan Murray & Timothy Matisziw & Tony Grubesic, 2007. "Critical network infrastructure analysis: interdiction and system flow," Journal of Geographical Systems, Springer, vol. 9(2), pages 103-117, June.
    7. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    8. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    9. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    10. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    11. Liotta, Giacomo & Stecca, Giuseppe & Kaihara, Toshiya, 2015. "Optimisation of freight flows and sourcing in sustainable production and transportation networks," International Journal of Production Economics, Elsevier, vol. 164(C), pages 351-365.
    12. Fateme Fotuhi & Nathan Huynh, 2017. "Reliable Intermodal Freight Network Expansion with Demand Uncertainties and Network Disruptions," Networks and Spatial Economics, Springer, vol. 17(2), pages 405-433, June.
    13. Xiaoqian Sun & Sebastian Wandelt & Xianbin Cao, 2017. "On Node Criticality in Air Transportation Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 737-761, September.
    14. Jenelius, Erik & Westin, Jonas & Holmgren, Åke J., 2010. "Critical infrastructure protection under imperfect attacker perception," International Journal of Critical Infrastructure Protection, Elsevier, vol. 3(1), pages 16-26.
    15. Gedik, Ridvan & Medal, Hugh & Rainwater, Chase & Pohl, Ed A. & Mason, Scott J., 2014. "Vulnerability assessment and re-routing of freight trains under disruptions: A coal supply chain network application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 45-57.
    16. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    17. Christopher W. Anderson & Joost R. Santos & Yacov Y. Haimes, 2007. "A Risk-based Input-Output Methodology for Measuring the Effects of the August 2003 Northeast Blackout," Economic Systems Research, Taylor & Francis Journals, vol. 19(2), pages 183-204.
    18. Alan T. Murray & Timothy C. Matisziw & Tony H. Grubesic, 2008. "A Methodological Overview of Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 573-592, December.
    19. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    20. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    21. Nicholson, Charles D. & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 62-73.
    22. Sullivan, J.L. & Novak, D.C. & Aultman-Hall, L. & Scott, D.M., 2010. "Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 323-336, June.
    23. Chen, Guo & Dong, Zhao Yang & Hill, David J. & Zhang, Guo Hua & Hua, Ke Qian, 2010. "Attack structural vulnerability of power grids: A hybrid approach based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 595-603.
    24. Taylor, Michael A.P. & Susilawati,, 2012. "Remoteness and accessibility in the vulnerability analysis of regional road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 761-771.
    25. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    26. Pant, Raghav & Barker, Kash & Grant, F. Hank & Landers, Thomas L., 2011. "Interdependent impacts of inoperability at multi-modal transportation container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 722-737, September.
    27. Yusta, Jose M. & Correa, Gabriel J. & Lacal-Arántegui, Roberto, 2011. "Methodologies and applications for critical infrastructure protection: State-of-the-art," Energy Policy, Elsevier, vol. 39(10), pages 6100-6119, October.
    28. Olaf Jonkeren & Ivano Azzini & Luca Galbusera & Stavros Ntalampiras & Georgios Giannopoulos, 2015. "Analysis of Critical Infrastructure Network Failure in the European Union: A Combined Systems Engineering and Economic Model," Networks and Spatial Economics, Springer, vol. 15(2), pages 253-270, June.
    29. Anthony Chen & Chao Yang & Sirisak Kongsomsaksakul & Ming Lee, 2007. "Network-based Accessibility Measures for Vulnerability Analysis of Degradable Transportation Networks," Networks and Spatial Economics, Springer, vol. 7(3), pages 241-256, September.
    30. Ham, Heejoo & Kim, Tschangho John & Boyce, David, 2005. "Implementation and estimation of a combined model of interregional, multimodal commodity shipments and transportation network flows," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 65-79, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Zhaoping & Ramirez-Marquez, Jose Emmanuel & Liu, Yu & Xiahou, Tangfan, 2020. "A new resilience-based component importance measure for multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Chris Bachmann, 2019. "Calibrating and Applying Random-Utility-Based Multiregional Input–Output Models for Real-World Applications," Networks and Spatial Economics, Springer, vol. 19(1), pages 219-242, March.
    3. Darayi, Mohamad & Barker, Kash & Nicholson, Charles D., 2019. "A multi-industry economic impact perspective on adaptive capacity planning in a freight transportation network," International Journal of Production Economics, Elsevier, vol. 208(C), pages 356-368.
    4. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    5. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    6. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    7. Yasser Almoghathawi & Andrés D. González & Kash Barker, 2021. "Exploring Recovery Strategies for Optimal Interdependent Infrastructure Network Resilience," Networks and Spatial Economics, Springer, vol. 21(1), pages 229-260, March.
    8. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    9. Gokhan Karakose & Ronald G. McGarvey, 2019. "Optimal Detection of Critical Nodes: Improvements to Model Structure and Performance," Networks and Spatial Economics, Springer, vol. 19(1), pages 1-26, March.
    10. T. Edward Yu & Bijay P. Sharma & Burton C. English, 2019. "Investigating Lock Delay on the Upper Mississippi River: a Spatial Panel Analysis," Networks and Spatial Economics, Springer, vol. 19(1), pages 275-291, March.
    11. Xinhua Mao & Xin Lou & Changwei Yuan & Jibiao Zhou, 2020. "Resilience-Based Restoration Model for Supply Chain Networks," Mathematics, MDPI, vol. 8(2), pages 1-16, January.
    12. Sushil Poudel & Mohammad Marufuzzaman & Md Abdul Quddus & Sudipta Chowdhury & Linkan Bian & Brian Smith, 2018. "Designing a Reliable and Congested Multi-Modal Facility Location Problem for Biofuel Supply Chain Network," Energies, MDPI, vol. 11(7), pages 1-24, June.
    13. Majbah Uddin & Nathan Huynh, 2019. "Reliable Routing of Road-Rail Intermodal Freight under Uncertainty," Networks and Spatial Economics, Springer, vol. 19(3), pages 929-952, September.
    14. Ngui Min Fui Tom, 2019. "Strategy to Build a Transshipment Port as a Catalyst to Achieving Critical Mass for Sabah’s Economic Growth," International Business Research, Canadian Center of Science and Education, vol. 12(7), pages 141-166, July.
    15. Nadia M. Viljoen & Johan W. Joubert, 2018. "The Road most Travelled: The Impact of Urban Road Infrastructure on Supply Chain Network Vulnerability," Networks and Spatial Economics, Springer, vol. 18(1), pages 85-113, March.
    16. Senderov, S.M. & Vorobev, S.V., 2020. "Approaches to the identification of critical facilities and critical combinations of facilities in the gas industry in terms of its operability," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darayi, Mohamad & Barker, Kash & Nicholson, Charles D., 2019. "A multi-industry economic impact perspective on adaptive capacity planning in a freight transportation network," International Journal of Production Economics, Elsevier, vol. 208(C), pages 356-368.
    2. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    3. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    4. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.
    5. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    6. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    7. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    8. Khademi, Navid & Babaei, Mohsen & Schmöcker, Jan-Dirk & Fani, Amirhossein, 2018. "Analysis of incident costs in a vulnerable sparse rail network – Description and Iran case study," Research in Transportation Economics, Elsevier, vol. 70(C), pages 9-27.
    9. Demirel, Hande & Kompil, Mert & Nemry, Françoise, 2015. "A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 62-76.
    10. Almotahari, Amirmasoud & Yazici, M. Anil, 2019. "A link criticality index embedded in the convex combinations solution of user equilibrium traffic assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 67-82.
    11. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    12. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    13. Xu, Zhaoping & Ramirez-Marquez, Jose Emmanuel & Liu, Yu & Xiahou, Tangfan, 2020. "A new resilience-based component importance measure for multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. López, Fernando A. & Páez, Antonio & Carrasco, Juan A. & Ruminot, Natalia A., 2017. "Vulnerability of nodes under controlled network topology and flow autocorrelation conditions," Journal of Transport Geography, Elsevier, vol. 59(C), pages 77-87.
    15. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    16. Nicholson, Charles D. & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 62-73.
    17. Ghavami, Seyed Morsal, 2019. "Multi-criteria spatial decision support system for identifying strategic roads in disaster situations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 23-36.
    18. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    19. Juan Carlos García-Palomares & Javier Gutiérrez & Juan Carlos Martín & Borja Moya-Gómez, 2018. "An analysis of the Spanish high capacity road network criticality," Transportation, Springer, vol. 45(4), pages 1139-1159, July.
    20. Almotahari, Amirmasoud & Yazici, Anil, 2021. "A computationally efficient metric for identification of critical links in large transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:17:y:2017:i:4:d:10.1007_s11067-017-9359-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.