IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v18y2018i1d10.1007_s11067-017-9370-1.html
   My bibliography  Save this article

The Road most Travelled: The Impact of Urban Road Infrastructure on Supply Chain Network Vulnerability

Author

Listed:
  • Nadia M. Viljoen

    (University of Pretoria)

  • Johan W. Joubert

    (University of Pretoria)

Abstract

Making a supply chain more resilient and making it more efficient are often diametrically opposed objectives. Managers have to make informed trade-offs when designing their supply chain networks. There are many methods available to quantify and optimise efficiency. Unfortunately the same cannot be said for vulnerability and resilience. We propose a method to quantify the impact that a supply chain’s dependence on the underlying transport infrastructure has on its vulnerability. The dependence relationship is modelled using multilayered complex network theory. We develop two metrics relating to the unique collection of shortest path sets namely redundancy and overlap. To test the relationships between these metrics and supply chain vulnerability we simulate progressive random link disruption of the urban road network and assess the impact this has on Fully Connected, Single Hub and Double Hub network archetypes. The results show that redundancy and overlap of the collection of shortest paths are significantly related to supply chain resilience, however under a purely random disturbance regime they hold no predictive power. This paper builds a foundation for a new field of inquiry into supply chain vulnerability by presenting a flexible mathematical formulation of the multilayered network and defining and testing two novel metrics that could be incorporated into supply chain network design decisions.

Suggested Citation

  • Nadia M. Viljoen & Johan W. Joubert, 2018. "The Road most Travelled: The Impact of Urban Road Infrastructure on Supply Chain Network Vulnerability," Networks and Spatial Economics, Springer, vol. 18(1), pages 85-113, March.
  • Handle: RePEc:kap:netspa:v:18:y:2018:i:1:d:10.1007_s11067-017-9370-1
    DOI: 10.1007/s11067-017-9370-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-017-9370-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-017-9370-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitrios Tsiotas & Serafeim Polyzos, 2015. "Analyzing the Maritime Transportation System in Greece: a Complex Network Approach," Networks and Spatial Economics, Springer, vol. 15(4), pages 981-1010, December.
    2. César Ducruet, 2016. "The polarization of global container flows by interoceanic canals: geographic coverage and network vulnerability," Post-Print halshs-00749639, HAL.
    3. Federico Rupi & Silvia Bernardi & Guido Rossi & Antonio Danesi, 2015. "The Evaluation of Road Network Vulnerability in Mountainous Areas: A Case Study," Networks and Spatial Economics, Springer, vol. 15(2), pages 397-411, June.
    4. Lordan, Oriol & Sallan, Jose M. & Escorihuela, Nuria & Gonzalez-Prieto, David, 2016. "Robustness of airline route networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 18-26.
    5. Lordan, Oriol & Sallan, Jose M. & Simo, Pep, 2014. "Study of the topology and robustness of airline route networks from the complex network approach: a survey and research agenda," Journal of Transport Geography, Elsevier, vol. 37(C), pages 112-120.
    6. César Ducruet, 2016. "The polarization of global container flows by interoceanic canals : Geographic coverage and network vulnerability," Post-Print hal-03246931, HAL.
    7. Heckmann, Iris & Comes, Tina & Nickel, Stefan, 2015. "A critical review on supply chain risk – Definition, measure and modeling," Omega, Elsevier, vol. 52(C), pages 119-132.
    8. Wagner, Stephan M. & Neshat, Nikrouz, 2010. "Assessing the vulnerability of supply chains using graph theory," International Journal of Production Economics, Elsevier, vol. 126(1), pages 121-129, July.
    9. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    10. César Ducruet & Theo Notteboom, 2012. "The worldwide maritime network of container shipping : Spatial structure and regional dynamics," Post-Print hal-03246962, HAL.
    11. Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
    12. Hu, Yihong & Zhu, Daoli, 2009. "Empirical analysis of the worldwide maritime transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2061-2071.
    13. Xiaoqian Sun & Sebastian Wandelt & Xianbin Cao, 2017. "On Node Criticality in Air Transportation Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 737-761, September.
    14. Aura Reggiani & Pietro Bucci & Giovanni Russo, 2011. "Accessibility and Network Structures in the German Commuting," Networks and Spatial Economics, Springer, vol. 11(4), pages 621-641, December.
    15. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2004. "Error and attack tolerance of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 388-394.
    16. Adelheid Holl & Ilaria Mariotti, 2018. "The Geography of Logistics Firm Location: The Role of Accessibility," Networks and Spatial Economics, Springer, vol. 18(2), pages 337-361, June.
    17. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    18. Pais Montes, Carlos & Freire Seoane, Maria Jesus & González Laxe, Fernando, 2012. "General cargo and containership emergent routes: A complex networks description," Transport Policy, Elsevier, vol. 24(C), pages 126-140.
    19. César Ducruet, 2016. "The polarization of global container flows by interoceanic canals: geographic coverage and network vulnerability," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(2), pages 242-260, February.
    20. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    21. César Ducruet, 2013. "Network diversity and maritime flows," Post-Print halshs-00815731, HAL.
    22. Taylor, Michael A.P. & Susilawati,, 2012. "Remoteness and accessibility in the vulnerability analysis of regional road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 761-771.
    23. Darren R. Fraser & Theo Notteboom & César Ducruet, 2016. "Peripherality in the global container shipping network : The case of the Southern African container port system," Post-Print hal-03246417, HAL.
    24. Johan Joubert & Kay Axhausen, 2013. "A complex network approach to understand commercial vehicle movement," Transportation, Springer, vol. 40(3), pages 729-750, May.
    25. César Ducruet, 2013. "Network diversity and maritime flows," Post-Print hal-03246957, HAL.
    26. Sergio Porta & Vito Latora & Fahui Wang & Salvador Rueda & Emanuele Strano & Salvatore Scellato & Alessio Cardillo & Eugenio Belli & Francisco CÃ rdenas & Berta Cormenzana & Laura Latora, 2012. "Street Centrality and the Location of Economic Activities in Barcelona," Urban Studies, Urban Studies Journal Limited, vol. 49(7), pages 1471-1488, May.
    27. Mohamed-Chérif, Fatima & Ducruet, César, 2016. "Regional integration and maritime connectivity across the Maghreb seaport system," Journal of Transport Geography, Elsevier, vol. 51(C), pages 280-293.
    28. András Bóta & Lauren M. Gardner & Alireza Khani, 2017. "Identifying Critical Components of a Public Transit System for Outbreak Control," Networks and Spatial Economics, Springer, vol. 17(4), pages 1137-1159, December.
    29. Fatima Z. Mohamed-Chérif & César Ducruet, 2016. "Regional integration and maritime connectivity across the Maghreb seaport system," Post-Print halshs-01145664, HAL.
    30. Fatima Mohammed-Chérif & César Ducruet, 2016. "Regional integration and maritime connectivity across the Maghreb seaport system," Post-Print hal-03246938, HAL.
    31. César Ducruet & Theo E. Notteboom, 2012. "The worldwide maritime network of container shipping: Spatial structure and regional dynamics," Post-Print halshs-00538051, HAL.
    32. Ducruet, César, 2013. "Network diversity and maritime flows," Journal of Transport Geography, Elsevier, vol. 30(C), pages 77-88.
    33. Zhuo, Yue & Peng, Yunfeng & Liu, Chang & Liu, Yingkai & Long, Keping, 2011. "Traffic dynamics on layered complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2401-2407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gast, Johannes & Kirkach, Evelina & Ivanov, Dmitry, 2022. "Structured literature review of transport networks and Supply Chain Resilience," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 469-496, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    2. Wei Cao & Xifu Wang, 2022. "Brittleness Evolution Model of the Supply Chain Network Based on Adaptive Agent Graph Theory under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    3. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    4. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    5. Majbah Uddin & Nathan Huynh, 2019. "Reliable Routing of Road-Rail Intermodal Freight under Uncertainty," Networks and Spatial Economics, Springer, vol. 19(3), pages 929-952, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    2. Viljoen, Nadia M. & Joubert, Johan W., 2016. "The vulnerability of the global container shipping network to targeted link disruption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 396-409.
    3. Nicanor García Álvarez & Belarmino Adenso-Díaz & Laura Calzada-Infante, 2021. "Maritime Traffic as a Complex Network: a Systematic Review," Networks and Spatial Economics, Springer, vol. 21(2), pages 387-417, June.
    4. Dirzka, Christopher & Acciaro, Michele, 2022. "Global shipping network dynamics during the COVID-19 pandemic's initial phases," Journal of Transport Geography, Elsevier, vol. 99(C).
    5. Sugimura, Yoshihisa & Akakura, Yasuhiro & Yotsushima, Tatsuki & Kawasaki, Tomoya, 2023. "Evaluation of Japanese port policies through network analysis," Transport Policy, Elsevier, vol. 135(C), pages 59-70.
    6. Tsiotas, Dimitrios & Niavis, Spyros & Sdrolias, Labros, 2018. "Operational and geographical dynamics of ports in the topology of cruise networks: The case of Mediterranean," Journal of Transport Geography, Elsevier, vol. 72(C), pages 23-35.
    7. Hongchu Yu & Zhixiang Fang & Guojun Peng & Mingxiang Feng, 2017. "Revealing the Linkage Network Dynamic Structures of Chinese Maritime Ports through Automatic Information System Data," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    8. Tagawa, Hoshi & Kawasaki, Tomoya & Hanaoka, Shinya, 2022. "Evaluation of international maritime network configuration and impact of port cooperation on port hierarchy," Transport Policy, Elsevier, vol. 123(C), pages 14-24.
    9. Nguyen Tran & Hans-Dietrich Haasis, 2014. "Empirical analysis of the container liner shipping network on the East-West corridor (1995–2011)," Netnomics, Springer, vol. 15(3), pages 121-153, November.
    10. Ducruet, César & Itoh, Hidekazu, 2022. "The spatial determinants of innovation diffusion: Evidence from global shipping networks," Journal of Transport Geography, Elsevier, vol. 101(C).
    11. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    12. Zuzanna Kosowska-Stamirowska & César Ducruet & Nishant Rai, 2016. "Evolving structure of the maritime trade network: evidence from the Lloyd’s Shipping Index (1890–2000)," Journal of Shipping and Trade, Springer, vol. 1(1), pages 1-17, December.
    13. Tocchi, Daniela & Sys, Christa & Papola, Andrea & Tinessa, Fiore & Simonelli, Fulvio & Marzano, Vittorio, 2022. "Hypergraph-based centrality metrics for maritime container service networks: A worldwide application," Journal of Transport Geography, Elsevier, vol. 98(C).
    14. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    15. Calatayud, Agustina & Mangan, John & Palacin, Roberto, 2017. "Connectivity to international markets: A multi-layered network approach," Journal of Transport Geography, Elsevier, vol. 61(C), pages 61-71.
    16. César Ducruet & Hidekazu Itoh & Justin Berli, 2020. "Urban gravity in the global container shipping network," Post-Print halshs-02588449, HAL.
    17. Tei, Alessio & Ferrari, Claudio, 2018. "PPIs and transport infrastructure: Evidence from Latin America and the Caribbean," Journal of Transport Geography, Elsevier, vol. 71(C), pages 204-212.
    18. Zhicheng Shen & Xinliang Xu & Jiahao Li & Shikuan Wang, 2019. "Vulnerability of the Maritime Network to Tropical Cyclones in the Northwest Pacific and the Northern Indian Ocean," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    19. Ducruet, César & Itoh, Hidekazu & Berli, Justin, 2020. "Urban gravity in the global container shipping network," Journal of Transport Geography, Elsevier, vol. 85(C).
    20. César Ducruet & Hidekazu Itoh, 2022. "The spatial determinants of innovation diffusion: evidence from global shipping networks," EconomiX Working Papers 2022-27, University of Paris Nanterre, EconomiX.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:18:y:2018:i:1:d:10.1007_s11067-017-9370-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.