IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v84y2020ics0966692318305040.html
   My bibliography  Save this article

Study of the regional accessibility calculation by income class based on utility-based accessibility

Author

Listed:
  • Jang, Seongman
  • Lee, Seungil

Abstract

With the Republic of Korea facing many challenges in urban housing development, the Korean government has implemented various public housing policies to stabilise the residential life of low-income households. While the government has established different housing policies for each household income class, there is a lack of research on rational accessibility models that consider the characteristics of each income class. Therefore, this study constructed an accessibility calculation model that reflects the transportation characteristics of various household income classes and used it to calculate the accessibility of each area and the household location of each income class. The results demonstrated limited difference in accessibility between income classes in Seoul; however, in Incheon and Gyeonggi Province, high-income accessibility was lower than low-income accessibility. It was also confirmed that the low-income households were more likely to be located in areas of low accessibility, while middle and high-income households were more likely to be located in areas of high accessibility. The main contributions of this study are as follows. First, it systematically derives the traffic characteristics by income class and uses these to calculate accessibility. Second, it presents a more reasonable model for calculating accessibility than the nominal model used in government policy decisions. Finally, it evaluates household location by income class based on the accessibility calculated in this study.

Suggested Citation

  • Jang, Seongman & Lee, Seungil, 2020. "Study of the regional accessibility calculation by income class based on utility-based accessibility," Journal of Transport Geography, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:jotrge:v:84:y:2020:i:c:s0966692318305040
    DOI: 10.1016/j.jtrangeo.2020.102697
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692318305040
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sweet, Richard John, 1997. "An aggregate measure of travel utility," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 403-416, October.
    2. Owen, Andrew & Levinson, David M., 2015. "Modeling the commute mode share of transit using continuous accessibility to jobs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 110-122.
    3. Ivanova, Olga, 2005. "A note on the consistent aggregation of nested logit demand functions," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 890-895, December.
    4. Cervero, Robert & Rood, Timothy & Appleyard, Bruce, 1995. "Job Accessibility as a Performance Indicator: An Analysis of Trends and Their Social Policy Implications in the San Francisco Bay Area," University of California Transportation Center, Working Papers qt6mp941d9, University of California Transportation Center.
    5. Borja Moya-Gómez & María Henar Salas-Olmedo & Juan Carlos García-Palomares & Javier Gutiérrez, 2018. "Dynamic Accessibility using Big Data: The Role of the Changing Conditions of Network Congestion and Destination Attractiveness," Networks and Spatial Economics, Springer, vol. 18(2), pages 273-290, June.
    6. Stępniak, Marcin & Pritchard, John P. & Geurs, Karst T. & Goliszek, Sławomir, 2019. "The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland," Journal of Transport Geography, Elsevier, vol. 75(C), pages 8-24.
    7. Piet Rietveld & Frank Bruinsma, 1998. "Is Transport Infrastructure Effective?," Advances in Spatial Science, Springer, number 978-3-642-72232-5, Fall.
    8. Xia, Nan & Cheng, Liang & Chen, Song & Wei, XiaoYan & Zong, WenWen & Li, ManChun, 2018. "Accessibility based on Gravity-Radiation model and Google Maps API: A case study in Australia," Journal of Transport Geography, Elsevier, vol. 72(C), pages 178-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erik B Lunke & Nils Fearnley & Jørgen Aarhaug, 2023. "The geography of public transport competitiveness in thirteen medium sized cities," Environment and Planning B, , vol. 50(8), pages 2071-2086, October.
    2. Qingsong Ni & Xin Wu & Peng Cui, 2022. "Research on the Equity of Educational Facilities in Counties of the Loess Plateau Gully Area: Chengcheng County, Shaanxi Province as an Example," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    3. Demitiry, Maria & Higgins, Christopher D. & Páez, Antonio & Miller, Eric J., 2022. "Accessibility to primary care physicians: Comparing floating catchments with a utility-based approach," Journal of Transport Geography, Elsevier, vol. 101(C).
    4. Wang, Qi & Lu, Shaokai, 2022. "The influence of hybrid accessibility on tourism economy in prefecture-level cities: Evidence from China's high-speed rail network," Journal of Transport Geography, Elsevier, vol. 104(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sławomir Goliszek, 2021. "GIS tools and programming languages for creating models of public and private transport potential accessibility in Szczecin, Poland," Journal of Geographical Systems, Springer, vol. 23(1), pages 115-137, January.
    2. Mansour, Shawky & Alahmadi, Mohammed & Abulibdeh, Ammar, 2022. "Spatial assessment of audience accessibility to historical monuments and museums in Qatar during the 2022 FIFA World Cup," Transport Policy, Elsevier, vol. 127(C), pages 116-129.
    3. Mengying Cui & David Levinson, 2020. "Primal and Dual Access," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    4. Goliszek Sławomir, 2022. "The potential accessibility to workplaces and working-age population by means of public and private car transport in Szczecin," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(1), pages 31-41, January.
    5. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    6. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    7. Ryan, Jean & Pereira, Rafael H.M. & Andersson, Magnus, 2023. "Accessibility and space-time differences in when and how different groups (choose to) travel," Journal of Transport Geography, Elsevier, vol. 111(C).
    8. Allen, Jeff & Farber, Steven, 2020. "Planning transport for social inclusion: An accessibility-activity participation approach," SocArXiv ap7wh, Center for Open Science.
    9. Yan, Xiang & Bejleri, Ilir & Zhai, Liang, 2022. "A spatiotemporal analysis of transit accessibility to low-wage jobs in Miami-Dade County," Journal of Transport Geography, Elsevier, vol. 98(C).
    10. Bimpou, Konstantina & Ferguson, Neil S., 2020. "Dynamic accessibility: Incorporating day-to-day travel time reliability into accessibility measurement," Journal of Transport Geography, Elsevier, vol. 89(C).
    11. Amparo Moyano & Marcin Stępniak & Borja Moya-Gómez & Juan Carlos García-Palomares, 2021. "Traffic congestion and economic context: changes of spatiotemporal patterns of traffic travel times during crisis and post-crisis periods," Transportation, Springer, vol. 48(6), pages 3301-3324, December.
    12. Hu, Yujie & Downs, Joni, 2019. "Measuring and visualizing place-based space-time job accessibility," Journal of Transport Geography, Elsevier, vol. 74(C), pages 278-288.
    13. Yujie Hu & Joni Downs, 2020. "Measuring and Visualizing Place-Based Space-Time Job Accessibility," Papers 2006.00268, arXiv.org.
    14. Fielbaum, Andrés & Jara-Diaz, Sergio, 2021. "Assessment of the socio-spatial effects of urban transport investment using Google Maps API," Journal of Transport Geography, Elsevier, vol. 91(C).
    15. Goliszek Sławomir & Połom Marcin & Duma Patryk, 2020. "Potential and cumulative accessibility of workplaces by public transport in Szczecin," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 50(50), pages 133-146, December.
    16. Shixiong Jiang & Wei Guan & Zhengbing He & Liu Yang, 2018. "Measuring Taxi Accessibility Using Grid-Based Method with Trajectory Data," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    17. Linlin Liu & Bohong Zheng & Chen Luo & Komi Bernard Bedra & Francis Masrabaye, 2022. "Access to City Center: Automobile vs. Public Transit," IJERPH, MDPI, vol. 19(9), pages 1-16, May.
    18. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.
    19. Trojanek, Radoslaw & Huderek-Glapska, Sonia, 2018. "Measuring the noise cost of aviation – The association between the Limited Use Area around Warsaw Chopin Airport and property values," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 103-114.
    20. Andrew Owen & Haibing Jiang, 2015. "Temporal Sampling Intervals and Service Frequency Harmonics in Transit Accessibility Evaluation," Working Papers 000144, University of Minnesota: Nexus Research Group.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:84:y:2020:i:c:s0966692318305040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.