IDEAS home Printed from https://ideas.repec.org/a/vrs/mgrsod/v26y2022i1p31-41n6.html
   My bibliography  Save this article

The potential accessibility to workplaces and working-age population by means of public and private car transport in Szczecin

Author

Listed:
  • Goliszek Sławomir

    (Department of Spatial Organization, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland)

Abstract

Commuting to work is one of the key motivations for people to move around cities or other regions. For the purpose of this study, the city of Szczecin in Poland has been selected, where the modal division of transport includes public transport (bus, tram) and private transport (car). The maps present the spatial distribution of citizens within a working area as well as precise locations of workplaces registered in the REGON database. The main objective of this study is to analyse the potential accessibility of workplaces and the working-age population of the city using the abovementioned modes of transport, and to indicate the places less accessible by public transport and car for commuting purposes. The study presented herein is based on data from 2018. The calculated average accessibility by different means of public and private transport as well as the potential accessibility quotient are presented in the form of box plots.

Suggested Citation

  • Goliszek Sławomir, 2022. "The potential accessibility to workplaces and working-age population by means of public and private car transport in Szczecin," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(1), pages 31-41, January.
  • Handle: RePEc:vrs:mgrsod:v:26:y:2022:i:1:p:31-41:n:6
    DOI: 10.2478/mgrsd-2020-0069
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/mgrsd-2020-0069
    Download Restriction: no

    File URL: https://libkey.io/10.2478/mgrsd-2020-0069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hadas, Yuval, 2013. "Assessing public transport systems connectivity based on Google Transit data," Journal of Transport Geography, Elsevier, vol. 33(C), pages 105-116.
    2. Michael A. Niedzielski & E. Eric Boschmann, 2014. "Travel Time and Distance as Relative Accessibility in the Journey to Work," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 104(6), pages 1156-1182, November.
    3. O’Kelly, Morton E. & Niedzielski, Michael A., 2008. "Efficient spatial interaction: attainable reductions in metropolitan average trip length," Journal of Transport Geography, Elsevier, vol. 16(5), pages 313-323.
    4. Lagrell, Ellen & Thulin, Eva & Vilhelmson, Bertil, 2018. "Accessibility strategies beyond the private car: A study of voluntarily carless families with young children in Gothenburg," Journal of Transport Geography, Elsevier, vol. 72(C), pages 218-227.
    5. Stępniak, Marcin & Pritchard, John P. & Geurs, Karst T. & Goliszek, Sławomir, 2019. "The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland," Journal of Transport Geography, Elsevier, vol. 75(C), pages 8-24.
    6. Wang, Chih-Hao & Chen, Na, 2015. "A GIS-based spatial statistical approach to modeling job accessibility by transportation mode: case study of Columbus, Ohio," Journal of Transport Geography, Elsevier, vol. 45(C), pages 1-11.
    7. R W Vickerman, 1974. "Accessibility, Attraction, and Potential: A Review of Some Concepts and Their Use in Determining Mobility," Environment and Planning A, , vol. 6(6), pages 675-691, December.
    8. Beria, Paolo & Debernardi, Andrea & Ferrara, Emanuele, 2017. "Measuring the long-distance accessibility of Italian cities," Journal of Transport Geography, Elsevier, vol. 62(C), pages 66-79.
    9. Allen, Jeff & Farber, Steven, 2019. "Sizing up transport poverty: A national scale accounting of low-income households suffering from inaccessibility in Canada, and what to do about it," SocArXiv ua2gj, Center for Open Science.
    10. Neutens, Tijs, 2015. "Accessibility, equity and health care: review and research directions for transport geographers," Journal of Transport Geography, Elsevier, vol. 43(C), pages 14-27.
    11. Rosik, Piotr & Pomianowski, Wojciech & Komornicki, Tomasz & Goliszek, Sławomir & Szejgiec-Kolenda, Barbara & Duma, Patryk, 2020. "Regional dispersion of potential accessibility quotient at the intra-European and intranational level. Core-periphery pattern, discontinuity belts and distance decay tornado effect," Journal of Transport Geography, Elsevier, vol. 82(C).
    12. Fielbaum, Andrés & Jara-Diaz, Sergio, 2021. "Assessment of the socio-spatial effects of urban transport investment using Google Maps API," Journal of Transport Geography, Elsevier, vol. 91(C).
    13. Morton E O'Kelly & Wook Lee, 2005. "Disaggregate Journey-to-Work Data: Implications for Excess Commuting and Jobs–Housing Balance," Environment and Planning A, , vol. 37(12), pages 2233-2252, December.
    14. Shirgaokar, Manish, 2014. "Employment centers and travel behavior: exploring the work commute of Mumbai’s rapidly motorizing middle class," Journal of Transport Geography, Elsevier, vol. 41(C), pages 249-258.
    15. Owen, Andrew & Levinson, David M., 2015. "Modeling the commute mode share of transit using continuous accessibility to jobs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 110-122.
    16. Jinjoo Bok & Youngsang Kwon, 2016. "Comparable Measures of Accessibility to Public Transport Using the General Transit Feed Specification," Sustainability, MDPI, vol. 8(3), pages 1-13, March.
    17. Morton O’Kelly & Michael Niedzielski & Justin Gleeson, 2012. "Spatial interaction models from Irish commuting data: variations in trip length by occupation and gender," Journal of Geographical Systems, Springer, vol. 14(4), pages 357-387, October.
    18. El-Geneidy, Ahmed & Levinson, David & Diab, Ehab & Boisjoly, Genevieve & Verbich, David & Loong, Charis, 2016. "The cost of equity: Assessing transit accessibility and social disparity using total travel cost," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 302-316.
    19. Sławomir Goliszek, 2021. "GIS tools and programming languages for creating models of public and private transport potential accessibility in Szczecin, Poland," Journal of Geographical Systems, Springer, vol. 23(1), pages 115-137, January.
    20. Allen, Jeff & Farber, Steven, 2019. "Sizing up transport poverty: A national scale accounting of low-income households suffering from inaccessibility in Canada, and what to do about it," Transport Policy, Elsevier, vol. 74(C), pages 214-223.
    21. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "A model and an algorithm for the dynamic traffic assignment problems," LIDAM Reprints CORE 346, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    22. Karner, Alex, 2018. "Assessing public transit service equity using route-level accessibility measures and public data," Journal of Transport Geography, Elsevier, vol. 67(C), pages 24-32.
    23. Widener, Michael J. & Farber, Steven & Neutens, Tijs & Horner, Mark, 2015. "Spatiotemporal accessibility to supermarkets using public transit: an interaction potential approach in Cincinnati, Ohio," Journal of Transport Geography, Elsevier, vol. 42(C), pages 72-83.
    24. Jiang, Like & Hagen-Zanker, Alex & Kumar, Prashant & Pritchard, John, 2021. "Equity in job accessibility and environmental quality in a segmented housing market: The case of Greater London," Journal of Transport Geography, Elsevier, vol. 90(C).
    25. Kent, Jennifer L., 2014. "Driving to save time or saving time to drive? The enduring appeal of the private car," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 103-115.
    26. Salonen, Maria & Toivonen, Tuuli, 2013. "Modelling travel time in urban networks: comparable measures for private car and public transport," Journal of Transport Geography, Elsevier, vol. 31(C), pages 143-153.
    27. Deepak K. Merchant & George L. Nemhauser, 1978. "A Model and an Algorithm for the Dynamic Traffic Assignment Problems," Transportation Science, INFORMS, vol. 12(3), pages 183-199, August.
    28. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    29. Roger Vickerman & Klaus Spiekermann & Michael Wegener, 1999. "Accessibility and Economic Development in Europe," Regional Studies, Taylor & Francis Journals, vol. 33(1), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sławomir Goliszek, 2021. "GIS tools and programming languages for creating models of public and private transport potential accessibility in Szczecin, Poland," Journal of Geographical Systems, Springer, vol. 23(1), pages 115-137, January.
    2. Goliszek Sławomir & Połom Marcin & Duma Patryk, 2020. "Potential and cumulative accessibility of workplaces by public transport in Szczecin," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 50(50), pages 133-146, December.
    3. Stępniak, Marcin & Pritchard, John P. & Geurs, Karst T. & Goliszek, Sławomir, 2019. "The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland," Journal of Transport Geography, Elsevier, vol. 75(C), pages 8-24.
    4. Wessel, Nate, 2019. "Accessibility Beyond the Schedule," SocArXiv c4yvx, Center for Open Science.
    5. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.
    6. Allen, Jeff & Farber, Steven, 2020. "Planning transport for social inclusion: An accessibility-activity participation approach," SocArXiv ap7wh, Center for Open Science.
    7. Fayyaz, S. Kiavash & Liu, Xiaoyue Cathy & Porter, Richard J., 2017. "Dynamic transit accessibility and transit gap causality analysis," Journal of Transport Geography, Elsevier, vol. 59(C), pages 27-39.
    8. Weckström, Christoffer & Kujala, Rainer & Mladenović, Miloš N. & Saramäki, Jari, 2019. "Assessment of large-scale transitions in public transport networks using open timetable data: case of Helsinki metro extension," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    9. Xu, Wangtu (Ato) & Li, Yongling & Wang, Hui, 2016. "Transit accessibility for commuters considering the demand elasticities of distance and transfer," Journal of Transport Geography, Elsevier, vol. 56(C), pages 138-156.
    10. Moyano, Amparo & Martínez, Héctor S. & Coronado, José M., 2018. "From network to services: A comparative accessibility analysis of the Spanish high-speed rail system," Transport Policy, Elsevier, vol. 63(C), pages 51-60.
    11. Mengying Cui & David Levinson, 2020. "Primal and Dual Access," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    12. Da Silva, Diego & Klumpenhouwer, Willem & Karner, Alex & Robinson, Mitchell & Liu, Rick & Shalaby, Amer, 2022. "Living on a fare: Modeling and quantifying the effects of fare budgets on transit access and equity," Journal of Transport Geography, Elsevier, vol. 101(C).
    13. Mansour, Shawky & Alahmadi, Mohammed & Abulibdeh, Ammar, 2022. "Spatial assessment of audience accessibility to historical monuments and museums in Qatar during the 2022 FIFA World Cup," Transport Policy, Elsevier, vol. 127(C), pages 116-129.
    14. Wessel, Nate & Farber, Steven, 2018. "On the Accuracy of Schedule-Based GTFS for Measuring Accessibility," SocArXiv hzgpd, Center for Open Science.
    15. Lee, Hasik & Park, Ho-Chul & Kho, Seung-Young & Kim, Dong-Kyu, 2019. "Assessing transit competitiveness in Seoul considering actual transit travel times based on smart card data," Journal of Transport Geography, Elsevier, vol. 80(C).
    16. Ruqin Yang & Yaolin Liu & Yanfang Liu & Hui Liu & Wenxia Gan, 2019. "Comprehensive Public Transport Service Accessibility Index—A New Approach Based on Degree Centrality and Gravity Model," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    17. Nazari Adli, Saeid & Donovan, Stuart, 2018. "Right to the city: Applying justice tests to public transport investments," Transport Policy, Elsevier, vol. 66(C), pages 56-65.
    18. Ahuja, Richa & Tiwari, Geetam, 2021. "Evolving term “accessibility” in spatial systems: Contextual evaluation of indicators," Transport Policy, Elsevier, vol. 113(C), pages 4-11.
    19. Tao, Sui & Cheng, Long & He, Sylvia & Witlox, Frank, 2023. "Examining the non-linear effects of transit accessibility on daily trip duration: A focus on the low-income population," Journal of Transport Geography, Elsevier, vol. 109(C).
    20. Huang, Ruihong, 2020. "Transit-based job accessibility and urban spatial structure," Journal of Transport Geography, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:mgrsod:v:26:y:2022:i:1:p:31-41:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.