IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i3p224-d64802.html
   My bibliography  Save this article

Comparable Measures of Accessibility to Public Transport Using the General Transit Feed Specification

Author

Listed:
  • Jinjoo Bok

    (Department of Civil & Environmental Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea)

  • Youngsang Kwon

    (Department of Civil and Environmental Engineering, Integrated Research Institute of Construction and Environmental Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea)

Abstract

Public transport plays a critical role in the sustainability of urban settings. The mass mobility and quality of urban lives can be improved by establishing public transport networks that are accessible to pedestrians within a reasonable walking distance. Accessibility to public transport is characterized by the ease with which inhabitants can reach means of transportation such as buses or metros. By measuring the degree of accessibility to public transport networks using a common data format, a comparative study can be conducted between different cities or metropolitan areas with different public transit systems. The General Transit Feed Specification (GTFS) by Google Developers allows this by offering a common format based on text files and sharing the data set voluntarily produced and contributed by the public transit agencies of many participating cities around the world. This paper suggests a method to assess and compare public transit accessibility in different urban areas using the GTFS feed and demographic data. To demonstrate the value of the new method, six examples of metropolitan areas and their public transit accessibility are presented and compared.

Suggested Citation

  • Jinjoo Bok & Youngsang Kwon, 2016. "Comparable Measures of Accessibility to Public Transport Using the General Transit Feed Specification," Sustainability, MDPI, vol. 8(3), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:3:p:224-:d:64802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/3/224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/3/224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mizuki Kawabata, 2003. "Job Access and Employment among Low-Skilled Autoless Workers in US Metropolitan Areas," Environment and Planning A, , vol. 35(9), pages 1651-1668, September.
    2. Mishra, Sabyasachee & Welch, Timothy F. & Jha, Manoj K., 2012. "Performance indicators for public transit connectivity in multi-modal transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1066-1085.
    3. Wachs, Martin & Kumagai, T. Gordon, 1973. "Physical accessibility as a social indicator," Socio-Economic Planning Sciences, Elsevier, vol. 7(5), pages 437-456, October.
    4. Hadas, Yuval & Ranjitkar, Prakash, 2012. "Modeling public-transit connectivity with spatial quality-of-transfer measurements," Journal of Transport Geography, Elsevier, vol. 22(C), pages 137-147.
    5. Daniels, Rhonda & Mulley, Corinne, 2013. "Explaining walking distance to public transport: The dominance of public transport supply," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 5-20.
    6. S Hanson & M Schwab, 1987. "Accessibility and Intraurban Travel," Environment and Planning A, , vol. 19(6), pages 735-748, June.
    7. Widener, Michael J. & Farber, Steven & Neutens, Tijs & Horner, Mark, 2015. "Spatiotemporal accessibility to supermarkets using public transit: an interaction potential approach in Cincinnati, Ohio," Journal of Transport Geography, Elsevier, vol. 42(C), pages 72-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshi, Saakshi & Bailey, Ajay & Datta, Anindita, 2021. "On the move? Exploring constraints to accessing urban mobility infrastructures," Transport Policy, Elsevier, vol. 102(C), pages 61-74.
    2. Mansour, Shawky & Alahmadi, Mohammed & Abulibdeh, Ammar, 2022. "Spatial assessment of audience accessibility to historical monuments and museums in Qatar during the 2022 FIFA World Cup," Transport Policy, Elsevier, vol. 127(C), pages 116-129.
    3. Sławomir Goliszek, 2021. "GIS tools and programming languages for creating models of public and private transport potential accessibility in Szczecin, Poland," Journal of Geographical Systems, Springer, vol. 23(1), pages 115-137, January.
    4. Yenisetty, Pavan Teja & Bahadure, Pankaj, 2021. "Assessing accessibility to ASFs from bus stops using distance measures: Case of two Indian cities," Land Use Policy, Elsevier, vol. 108(C).
    5. Adrian Barchański & Renata Żochowska & Marcin Jacek Kłos, 2022. "A Method for the Identification of Critical Interstop Sections in Terms of Introducing Electric Buses in Public Transport," Energies, MDPI, vol. 15(20), pages 1-37, October.
    6. Akihiko Nishino & Akira Kodaka & Madoka Nakajima & Naohiko Kohtake, 2021. "A Model for Calculating the Spatial Coverage of Audible Disaster Warnings Using GTFS Realtime Data," Sustainability, MDPI, vol. 13(23), pages 1-10, December.
    7. Bwire, Hannibal & Zengo, Emil, 2020. "Comparison of efficiency between public and private transport modes using excess commuting: An experience in Dar es Salaam," Journal of Transport Geography, Elsevier, vol. 82(C).
    8. Renata Żochowska & Marcin Jacek Kłos & Piotr Soczówka & Marcin Pilch, 2022. "Assessment of Accessibility of Public Transport by Using Temporal and Spatial Analysis," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
    9. Moyano, Amparo & Moya-Gómez, Borja & Gutiérrez, Javier, 2018. "Access and egress times to high-speed rail stations: a spatiotemporal accessibility analysis," Journal of Transport Geography, Elsevier, vol. 73(C), pages 84-93.
    10. Goliszek Sławomir, 2022. "The potential accessibility to workplaces and working-age population by means of public and private car transport in Szczecin," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(1), pages 31-41, January.
    11. Vergel-Tovar, C. Erik & Leape, Jonathan & Villegas Carrasquilla, Mónica & Peñas Arana, Maria Claudia & Toro Gonzalez, Daniel & Canon Rubiano, Leonardo & Salas Barón, Eliana & Martinez, Paulo, 2022. "Mapping the transit network of greater Cartagena with mobile phones: Coverage, accessibility, and informality," Journal of Transport Geography, Elsevier, vol. 105(C).
    12. Prasanta K. Sahu & Babak Mehran & Surya P. Mahapatra & Satish Sharma, 2021. "Spatial data analysis approach for network-wide consolidation of bus stop locations," Public Transport, Springer, vol. 13(2), pages 375-394, June.
    13. Athanasios-Alexandru Gavrilidis & Andreea Nita & Mihaita-Iulian Niculae, 2020. "Assessing the Potential Conflict Occurrence Due to Metropolitan Transportation Planning: A Proposed Quantitative Approach," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
    14. L. Samková, 2023. "Management of integrated passenger transport system and its role in tourism development," Economics Working Papers 2023-03, University of South Bohemia in Ceske Budejovice, Faculty of Economics.
    15. Piotr Kaszczyszyn & Natalia Sypion-Dutkowska, 2019. "Walking Access to Public Transportation Stops for City Residents. A Comparison of Methods," Sustainability, MDPI, vol. 11(14), pages 1-13, July.
    16. Marcin Jacek Kłos & Grzegorz Sierpiński, 2023. "Strategy for the Siting of Electric Vehicle Charging Stations for Parcel Delivery Service Providers," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merlin, Louis A. & Hu, Lingqian, 2017. "Does competition matter in measures of job accessibility? Explaining employment in Los Angeles," Journal of Transport Geography, Elsevier, vol. 64(C), pages 77-88.
    2. Chia, Jason & Lee, Jinwoo (Brian), 2020. "Extending public transit accessibility models to recognise transfer location," Journal of Transport Geography, Elsevier, vol. 82(C).
    3. Hadas, Yuval & Gnecco, Giorgio & Sanguineti, Marcello, 2017. "An approach to transportation network analysis via transferable utility games," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 120-143.
    4. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    5. Huang, Ruihong, 2020. "Transit-based job accessibility and urban spatial structure," Journal of Transport Geography, Elsevier, vol. 86(C).
    6. Cheng, Yung-Hsiang & Chen, Ssu-Yun, 2015. "Perceived accessibility, mobility, and connectivity of public transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 386-403.
    7. Reilly, Michael & Landis, John, 2003. "The Influence of Built-Form and Land Use on Mode Choice," University of California Transportation Center, Working Papers qt46r3k871, University of California Transportation Center.
    8. Liu, Chengliang & Duan, Dezhong, 2020. "Spatial inequality of bus transit dependence on urban streets and its relationships with socioeconomic intensities: A tale of two megacities in China," Journal of Transport Geography, Elsevier, vol. 86(C).
    9. Mingzhu Song & Yi Zhang & Meng Li & Yi Zhang, 2021. "Accessibility of Transit Stops with Multiple Feeder Modes: Walking and Private-Bike Cycling," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    10. Dimitrov, Stavri Dimitri & Ceder, Avishai (Avi), 2016. "A method of examining the structure and topological properties of public-transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 373-387.
    11. Grengs, Joe, 2010. "Job accessibility and the modal mismatch in Detroit," Journal of Transport Geography, Elsevier, vol. 18(1), pages 42-54.
    12. Fayyaz, S. Kiavash & Liu, Xiaoyue Cathy & Porter, Richard J., 2017. "Dynamic transit accessibility and transit gap causality analysis," Journal of Transport Geography, Elsevier, vol. 59(C), pages 27-39.
    13. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    14. Zhou, Yueer & Li, Linbo & Zhang, Yahua, 2023. "Location of transit-oriented development stations based on multimodal network equilibrium: Bi-level programming and paradoxes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    15. Hu, Xinlei & Huang, Jie & Shi, Feng, 2019. "Circuity in China's high-speed-rail network," Journal of Transport Geography, Elsevier, vol. 80(C).
    16. Kelobonye, Keone & Zhou, Heng & McCarney, Gary & Xia, Jianhong (Cecilia), 2020. "Measuring the accessibility and spatial equity of urban services under competition using the cumulative opportunities measure," Journal of Transport Geography, Elsevier, vol. 85(C).
    17. Xinxin Zhou & Yuan Ding & Changbin Wu & Jing Huang & Chendi Hu, 2019. "Measuring the Spatial Allocation Rationality of Service Facilities of Residential Areas Based on Internet Map and Location-Based Service Data," Sustainability, MDPI, vol. 11(5), pages 1-19, March.
    18. Jeroen Bastiaanssen & Daniel Johnson & Karen Lucas, 2022. "Does better job accessibility help people gain employment? The role of public transport in Great Britain," Urban Studies, Urban Studies Journal Limited, vol. 59(2), pages 301-322, February.
    19. Mengying Cui & David Levinson, 2020. "Multi-Activity Access: How Activity Choice Affects Opportunity," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    20. Zhou, Yaoming & Wang, Junwei & Sheu, Jiuh-Biing, 2019. "On connectivity of post-earthquake road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:3:p:224-:d:64802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.