IDEAS home Printed from https://ideas.repec.org/a/kap/jtecht/v43y2018i4d10.1007_s10961-017-9587-7.html
   My bibliography  Save this article

Determinants of patent quality in U.S. manufacturing: technological diversity, appropriability, and firm size

Author

Listed:
  • Burak Dindaroğlu

    (Yali Mah.)

Abstract

We study the determinants of patent quality for a panel of U.S. manufacturing firms, focusing mainly on the effects of firm-level technological diversity and appropriability conditions. Technological diversity increases the quality-adjusted patent count on most of the diversity distribution, but its relationship with average patent quality is an inverted-U. We find that appropriability conditions (proxied by the rate of self-citations at the firm level) have similar, non-linear effects on both the average quality of patents, and quality-adjusted patents per R&D, which is consistent with an inverted-U pattern. Firm size has no effect on the average quality of patented innovation at the firm level. Finally, as R&D intensity increases, the rate of corporate innovation falls, but its average quality increases, indicating a quality–quantity trade-off in R&D.

Suggested Citation

  • Burak Dindaroğlu, 2018. "Determinants of patent quality in U.S. manufacturing: technological diversity, appropriability, and firm size," The Journal of Technology Transfer, Springer, vol. 43(4), pages 1083-1106, August.
  • Handle: RePEc:kap:jtecht:v:43:y:2018:i:4:d:10.1007_s10961-017-9587-7
    DOI: 10.1007/s10961-017-9587-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10961-017-9587-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10961-017-9587-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter Y. Oi & Todd L. Idson, 1999. "Workers Are More Productive in Large Firms," American Economic Review, American Economic Association, vol. 89(2), pages 104-108, May.
    2. Link, Albert N, 1980. "Firm Size and Efficient Entrepreneurial Activity: A Reformulation of the Schumpeter Hypothesis," Journal of Political Economy, University of Chicago Press, vol. 88(4), pages 771-782, August.
    3. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    4. William S. Comanor, 1967. "Market Structure, Product Differentiation, and Industrial Research," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 81(4), pages 639-657.
    5. Acs, Zoltan J & Audretsch, David B & Feldman, Maryann P, 1994. "R&D Spillovers and Recipient Firm Size," The Review of Economics and Statistics, MIT Press, vol. 76(2), pages 336-340, May.
    6. Jinyoung Kim & Sangjoon John Lee & Gerald Marschke, 2009. "Inventor Productivity And Firm Size: Evidence From Panel Data On Inventors," Pacific Economic Review, Wiley Blackwell, vol. 14(4), pages 516-531, October.
    7. Goodall, Amanda H., 2009. "Highly cited leaders and the performance of research universities," Research Policy, Elsevier, vol. 38(7), pages 1079-1092, September.
    8. Pavitt, Keith, 1998. "Technologies, Products and Organization in the Innovating Firm: What Adam Smith Tells Us and Joseph Schumpeter Doesn't," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 7(3), pages 433-452, September.
    9. Nelson, Richard R. & Wolff, Edward N., 1997. "Factors behind cross-industry differences in technical progress," Structural Change and Economic Dynamics, Elsevier, vol. 8(2), pages 205-220, June.
    10. Nancy T. Gallini, 1992. "Patent Policy and Costly Imitation," RAND Journal of Economics, The RAND Corporation, vol. 23(1), pages 52-63, Spring.
    11. MacDonald, James M, 1985. "R and D and the Directions of Diversification," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 583-590, November.
    12. Gamal Atallah & Gabriel Rodríguez, 2006. "Indirect patent citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 67(3), pages 437-465, June.
    13. Cohen, Wesley M & Klepper, Steven, 1996. "A Reprise of Size and R&D," Economic Journal, Royal Economic Society, vol. 106(437), pages 925-951, July.
    14. Loof, Hans & Heshmati, Almas, 2002. "Knowledge capital and performance heterogeneity: : A firm-level innovation study," International Journal of Production Economics, Elsevier, vol. 76(1), pages 61-85, March.
    15. Josh Lerner, 2002. "150 Years of Patent Protection," American Economic Review, American Economic Association, vol. 92(2), pages 221-225, May.
    16. Bruno Crepon & Emmanuel Duguet & Jacques Mairesse, 1998. "Research, Innovation And Productivity: An Econometric Analysis At The Firm Level," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 7(2), pages 115-158.
    17. de Rassenfosse, Gaétan, 2013. "Do firms face a trade-off between the quantity and the quality of their inventions?," Research Policy, Elsevier, vol. 42(5), pages 1072-1079.
    18. Breschi, Stefano & Malerba, Franco & Orsenigo, Luigi, 2000. "Technological Regimes and Schumpeterian Patterns of Innovation," Economic Journal, Royal Economic Society, vol. 110(463), pages 388-410, April.
    19. Reinganum, Jennifer F, 1983. "Uncertain Innovation and the Persistence of Monopoly," American Economic Review, American Economic Association, vol. 73(4), pages 741-748, September.
    20. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    21. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    22. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    23. Scott,John T., 2005. "Purposive Diversification and Economic Performance," Cambridge Books, Cambridge University Press, number 9780521022583.
    24. Agarwal, Rajshree & Audretsch, David B., 1999. "The two views of small firms in industry dynamics: a reconciliation," Economics Letters, Elsevier, vol. 62(2), pages 245-251, February.
    25. Philippe Aghion & Nick Bloom & Richard Blundell & Rachel Griffith & Peter Howitt, 2005. "Competition and Innovation: an Inverted-U Relationship," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(2), pages 701-728.
    26. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    27. Lichtenberg, Frank R & Siegel, Donald, 1991. "The Impact of R&D Investment on Productivity--New Evidence Using Linked R&D-LRD Data," Economic Inquiry, Western Economic Association International, vol. 29(2), pages 203-229, April.
    28. Lionel Nesta & Pier Paolo Saviotti, 2005. "Coherence Of The Knowledge Base And The Firm'S Innovative Performance: Evidence From The U.S. Pharmaceutical Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 53(1), pages 123-142, March.
    29. Bronwyn Hall, 2004. "The financing of research and development," Chapters, in: Anthony Bartzokas & Sunil Mani (ed.), Financial Systems, Corporate Investment in Innovation, and Venture Capital, chapter 2, Edward Elgar Publishing.
    30. Zoltan J. Acs & David B. Audretsch & Maryann P. Feldman, 2008. "R&D Spillovers and Recipient Firm Size," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 8, pages 88-94, Edward Elgar Publishing.
    31. Nancy T. Gallini, 2002. "The Economics of Patents: Lessons from Recent U.S. Patent Reform," Journal of Economic Perspectives, American Economic Association, vol. 16(2), pages 131-154, Spring.
    32. Harabi, Najib, 1995. "Appropriability of technical innovations an empirical analysis," Research Policy, Elsevier, vol. 24(6), pages 981-992, November.
    33. Baltagi, Badi H. & Wu, Ping X., 1999. "Unequally Spaced Panel Data Regressions With Ar(1) Disturbances," Econometric Theory, Cambridge University Press, vol. 15(6), pages 814-823, December.
    34. Richard C. Levin & Alvin K. Klevorick & Richard R. Nelson & Sidney G. Winter, 1987. "Appropriating the Returns from Industrial Research and Development," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(3, Specia), pages 783-832.
    35. Griliches, Zvi, 1998. "R&D and Productivity," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226308869, December.
    36. Rebecca Henderson & Iain Cockburn, 1996. "Scale, Scope, and Spillovers: The Determinants of Research Productivity in Drug Discovery," RAND Journal of Economics, The RAND Corporation, vol. 27(1), pages 32-59, Spring.
    37. Crepon, B. & Duguet, E. & Mairesse, J., 1998. "Research Investment, Innovation and Productivity: An Econometric Analysis at the Firm Level," Papiers d'Economie Mathématique et Applications 98.15, Université Panthéon-Sorbonne (Paris 1).
    38. Gambardella, Alfonso & Torrisi, Salvatore, 1998. "Does technological convergence imply convergence in markets? Evidence from the electronics industry," Research Policy, Elsevier, vol. 27(5), pages 445-463, September.
    39. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    40. A. Bhargava & L. Franzini & W. Narendranathan, 2006. "Serial Correlation and the Fixed Effects Model," World Scientific Book Chapters, in: Econometrics, Statistics And Computational Approaches In Food And Health Sciences, chapter 4, pages 61-77, World Scientific Publishing Co. Pte. Ltd..
    41. Garcia-Vega, Maria, 2006. "Does technological diversification promote innovation?: An empirical analysis for European firms," Research Policy, Elsevier, vol. 35(2), pages 230-246, March.
    42. Zvi Griliches, 1998. "R&D and Productivity: The Econometric Evidence," NBER Books, National Bureau of Economic Research, Inc, number gril98-1, March.
    43. Lettl, Christopher & Rost, Katja & von Wartburg, Iwan, 2009. "Why are some independent inventors 'heroes' and others 'hobbyists'? The moderating role of technological diversity and specialization," Research Policy, Elsevier, vol. 38(2), pages 243-254, March.
    44. Patel, Pari & Pavitt, Keith, 1997. "The technological competencies of the world's largest firms: Complex and path-dependent, but not much variety," Research Policy, Elsevier, vol. 26(2), pages 141-156, May.
    45. David J. Teece & Richard Rumelt & Giovanni Dosi & Sidney Winter, 2000. "Understanding Corporate Coherence: Theory and Evidence," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 9, pages 264-293, Edward Elgar Publishing.
    46. Hall, Bronwyn H & Ziedonis, Rosemarie Ham, 2001. "The Patent Paradox Revisited: An Empirical Study of Patenting in the U.S. Semiconductor Industry, 1979-1995," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 101-128, Spring.
    47. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67(3), pages 297-297.
    48. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
    49. Quintana-Garci­a, Cristina & Benavides-Velasco, Carlos A., 2008. "Innovative competence, exploration and exploitation: The influence of technological diversification," Research Policy, Elsevier, vol. 37(3), pages 492-507, April.
    50. Ulrich Doraszelski & Jordi Jaumandreu, 2013. "R&D and Productivity: Estimating Endogenous Productivity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1338-1383.
    51. Pavitt, Keith & Robson, Michael & Townsend, Joe, 1987. "The Size Distribution of Innovating Firms in the UK: 1945-1983," Journal of Industrial Economics, Wiley Blackwell, vol. 35(3), pages 297-316, March.
    52. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    53. Cockburn, Iain M. & Henderson, Rebecca M., 2001. "Scale and scope in drug development: unpacking the advantages of size in pharmaceutical research," Journal of Health Economics, Elsevier, vol. 20(6), pages 1033-1057, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:izm:wpaper:1207 is not listed on IDEAS
    2. Burak Dindaroglu, 2011. "R&D Productivity and Firm Size in Semiconductors and Pharmaceuticals: Evidence from Citation Yields," Working Papers 1101, Izmir University of Economics.
    3. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    4. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    5. Dibiaggio, Ludovic & Nasiriyar, Maryam & Nesta, Lionel, 2014. "Substitutability and complementarity of technological knowledge and the inventive performance of semiconductor companies," Research Policy, Elsevier, vol. 43(9), pages 1582-1593.
    6. repec:hal:spmain:info:hdl:2441/43aq8ffdqb82sbffkv69bt1eaa is not listed on IDEAS
    7. Lorenz, Steffi, 2015. "Diversität und Verbundenheit der unternehmerischen Wissensbasis: Ein neuartiger Messansatz mit Indikatoren aus Innovationsprojekten," Discussion Papers on Strategy and Innovation 15-01, Philipps-University Marburg, Department of Technology and Innovation Management (TIM).
    8. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    9. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    10. Feng Zhang & Guohua Jiang, 2019. "Combination of Complementary Technological Knowledge to Generate “Hard to Imitate” Technologies," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-24, June.
    11. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    12. Lichtenthaler, Ulrich, 2010. "Determinants of proactive and reactive technology licensing: A contingency perspective," Research Policy, Elsevier, vol. 39(1), pages 55-66, February.
    13. Gino Cattani, 2005. "Preadaptation, Firm Heterogeneity, and Technological Performance: A Study on the Evolution of Fiber Optics, 1970–1995," Organization Science, INFORMS, vol. 16(6), pages 563-580, December.
    14. René Belderbos & Leo Sleuwaegen & Reinhilde Veugelers, 2010. "Market Integration and Technological Leadership in Europe," European Economy - Economic Papers 2008 - 2015 403, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    15. Bart Leten & Rene Belderbos & Bart Van Looy, 2016. "Entry and Technological Performance in New Technology Domains: Technological Opportunities, Technology Competition and Technological Relatedness," Journal of Management Studies, Wiley Blackwell, vol. 53(8), pages 1257-1291, December.
    16. Nesta, Lionel, 2008. "Knowledge and productivity in the world's largest manufacturing corporations," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 886-902, September.
    17. Bronwyn Hall & Francesca Lotti & Jacques Mairesse, 2009. "Innovation and productivity in SMEs: empirical evidence for Italy," Small Business Economics, Springer, vol. 33(1), pages 13-33, June.
    18. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    19. Pellegrino, Gabriele & Piva, Mariacristina & Vivarelli, Marco, 2012. "Young firms and innovation: A microeconometric analysis," Structural Change and Economic Dynamics, Elsevier, vol. 23(4), pages 329-340.
    20. Carlo Corradini & Pelin Demirel & Giuliana Battisti, 2016. "Technological diversification within UK’s small serial innovators," Small Business Economics, Springer, vol. 47(1), pages 163-177, June.
    21. Elizabeth Webster & Paul H. Jensen, 2011. "Do Patents Matter for Commercialization?," Journal of Law and Economics, University of Chicago Press, vol. 54(2), pages 431-453.
    22. Antonio Revilla & Zulima Fern�ndez, 2013. "Environmental Dynamism, Firm Size and the Economic Productivity of R&D," Industry and Innovation, Taylor & Francis Journals, vol. 20(6), pages 503-522, August.

    More about this item

    Keywords

    Innovation quality; Technological diversity; Appropriability; Firm size; Patents; Citations;
    All these keywords.

    JEL classification:

    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jtecht:v:43:y:2018:i:4:d:10.1007_s10961-017-9587-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.