IDEAS home Printed from https://ideas.repec.org/a/kap/ecopln/v51y2018i3d10.1007_s10644-017-9202-9.html
   My bibliography  Save this article

Optimal environment-friendly economic restructuring: the United States–China cooperation case study

Author

Listed:
  • Alexander Vaninsky

    (City University of New York, Hostos Community College)

Abstract

This paper discusses a model for the restructuring of national economies for the purpose of achieving optimal growth under conditions of decreased energy consumption and greenhouse gas emissions. The discussion combines input–output and factorial-decomposition models, and applies projected gradient and factor analysis to find the optimal structural changes that serve all three goals. A comparative analysis of the economies of the United States and China, including opportunities for cooperative restructuring, serves as a case study.

Suggested Citation

  • Alexander Vaninsky, 2018. "Optimal environment-friendly economic restructuring: the United States–China cooperation case study," Economic Change and Restructuring, Springer, vol. 51(3), pages 189-220, August.
  • Handle: RePEc:kap:ecopln:v:51:y:2018:i:3:d:10.1007_s10644-017-9202-9
    DOI: 10.1007/s10644-017-9202-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10644-017-9202-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10644-017-9202-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Ching-Chih, 2010. "A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China," Applied Energy, Elsevier, vol. 87(11), pages 3533-3537, November.
    2. Shahbaz, Muhammad & Khan, Saleheen & Tahir, Mohammad Iqbal, 2013. "The dynamic links between energy consumption, economic growth, financial development and trade in China: Fresh evidence from multivariate framework analysis," Energy Economics, Elsevier, vol. 40(C), pages 8-21.
    3. Sophocles Brissimis & George Hondroyiannis & Christos Papazoglou & Nicholas Tsaveas & Melina Vasardani, 2012. "Current account determinants and external sustainability in periods of structural change," Economic Change and Restructuring, Springer, vol. 45(1), pages 71-95, February.
    4. Shlomo Maital & Alexander Vaninsky, 2000. "Productivity Paradoxes and Their Resolution," Journal of Productivity Analysis, Springer, vol. 14(3), pages 191-207, November.
    5. Oliveira, Carla & Antunes, Carlos Henggeler, 2004. "A multiple objective model to deal with economy-energy-environment interactions," European Journal of Operational Research, Elsevier, vol. 153(2), pages 370-385, March.
    6. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    7. Smith, Alexander M. & Brown, Marilyn A., 2015. "Demand response: A carbon-neutral resource?," Energy, Elsevier, vol. 85(C), pages 10-22.
    8. Chontanawat, Jaruwan & Hunt, Lester C. & Pierse, Richard, 2008. "Does energy consumption cause economic growth?: Evidence from a systematic study of over 100 countries," Journal of Policy Modeling, Elsevier, vol. 30(2), pages 209-220.
    9. Wang, Yafei & Zhao, Hongyan & Li, Liying & Liu, Zhu & Liang, Sai, 2013. "Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis," Energy Policy, Elsevier, vol. 58(C), pages 312-318.
    10. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2014. "Drivers of greenhouse gas emissions in the Baltic States: A structural decomposition analysis," Ecological Economics, Elsevier, vol. 98(C), pages 22-28.
    11. Duan, Hong-Bo & Zhu, Lei & Fan, Ying, 2014. "Optimal carbon taxes in carbon-constrained China: A logistic-induced energy economic hybrid model," Energy, Elsevier, vol. 69(C), pages 345-356.
    12. Annageldy Arazmuradov, 2016. "Economic prospect on carbon emissions in Commonwealth of Independent States," Economic Change and Restructuring, Springer, vol. 49(4), pages 395-427, November.
    13. Marco Springmann & Da Zhang & Valerie Karplus, 2015. "Consumption-Based Adjustment of Emissions-Intensity Targets: An Economic Analysis for China’s Provinces," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 615-640, August.
    14. Bastola, Umesh & Sapkota, Pratikshya, 2015. "Relationships among energy consumption, pollution emission, and economic growth in Nepal," Energy, Elsevier, vol. 80(C), pages 254-262.
    15. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.
    16. Gang Fan & Liping He & Xiaoyun Wei & Liyan Han, 2013. "China’s growth adjustment: moderation and structural changes," Economic Change and Restructuring, Springer, vol. 46(1), pages 9-24, March.
    17. Brown, Mark T. & Cohen, Matthew J. & Sweeney, Sharlynn, 2009. "Predicting national sustainability: The convergence of energetic, economic and environmental realities," Ecological Modelling, Elsevier, vol. 220(23), pages 3424-3438.
    18. Long, Xingle & Naminse, Eric Yaw & Du, Jianguo & Zhuang, Jincai, 2015. "Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 680-688.
    19. Ronald Kumar & Peter Stauvermann & Arvind Patel, 2015. "Nexus between electricity consumption and economic growth: a study of Gibraltar," Economic Change and Restructuring, Springer, vol. 48(2), pages 119-135, May.
    20. Butnar, Isabela & Llop, Maria, 2011. "Structural decomposition analysis and input-output subsystems: Changes in CO2 emissions of Spanish service sectors (2000-2005)," Ecological Economics, Elsevier, vol. 70(11), pages 2012-2019, September.
    21. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    22. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions," Ecological Economics, Elsevier, vol. 66(4), pages 687-699, July.
    23. Gössling, Stefan & Scott, Daniel & Hall, C. Michael, 2015. "Inter-market variability in CO2 emission-intensities in tourism: Implications for destination marketing and carbon management," Tourism Management, Elsevier, vol. 46(C), pages 203-212.
    24. Haiyan Zhang & Michael L. Lahr, 2014. "Can The Carbonizing Dragon Be Domesticated? Insights From A Decomposition Of Energy Consumption And Intensity In China, 1987--2007," Economic Systems Research, Taylor & Francis Journals, vol. 26(2), pages 119-140, June.
    25. Maital, Shlomo & Vaninsky, Alexander, 1999. "Data envelopment analysis with a single DMU: A graphic projected-gradient approach," European Journal of Operational Research, Elsevier, vol. 115(3), pages 518-528, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zheng-Xin & Jv, Yue-Qi, 2021. "A non-linear systematic grey model for forecasting the industrial economy-energy-environment system," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    2. Maria Markaki & Stelios Papadakis & Anna Putnová, 2021. "A Modern Industrial Policy for the Czech Republic: Optimizing the Structure of Production," Mathematics, MDPI, vol. 9(23), pages 1-20, November.
    3. Vaninsky, Alexander, 2023. "Roadmapping green economic restructuring: A Ricardian gradient approach," Energy Economics, Elsevier, vol. 125(C).
    4. Boratyński, Jakub, 2021. "Decomposing structural decomposition: The role of changes in individual industry shares," Energy Economics, Elsevier, vol. 103(C).
    5. Canh Q. Le & Hoang-Mai T. Bui, 2022. "Optimal economic restructuring to reduce carbon emissions intensity using the projected gradient algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6271-6287, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    2. Xiao-Ying Dong & Qiying Ran & Yu Hao, 2019. "On the nonlinear relationship between energy consumption and economic development in China: new evidence from panel data threshold estimations," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1837-1857, July.
    3. Benkraiem, Ramzi & Lahiani, Amine & Miloudi, Anthony & Shahbaz, Muhammad, 2019. "The asymmetric role of shadow economy in the energy-growth nexus in Bolivia," Energy Policy, Elsevier, vol. 125(C), pages 405-417.
    4. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    5. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    6. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    7. Xiangrong Ma & Jianping Ge & Wei Wang, 2017. "The relationship between urbanization, income growth and carbon dioxide emissions and the policy implications for China: a cointegrated vector error correction (VEC) analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 1017-1033, June.
    8. Zhihui Lv & Amanda M. Y. Chu & Michael McAleer & Wing-Keung Wong, 2019. "Modelling Economic Growth, Carbon Emissions, and Fossil Fuel Consumption in China: Cointegration and Multivariate Causality," IJERPH, MDPI, vol. 16(21), pages 1-35, October.
    9. Fang, Zheng & Chen, Yang, 2017. "Human capital, energy, and economic development – Evidence from Chinese provincial data," RIEI Working Papers 2017-03, Xi'an Jiaotong-Liverpool University, Research Institute for Economic Integration.
    10. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2015. "Energy Consumption, CO2 Emissions, and Economic Growth: A Moral Dilemma," MPRA Paper 67422, University Library of Munich, Germany.
    11. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    12. Rahman, Md Saifur & Junsheng, Ha & Shahari, Farihana & Aslam, Mohamed & Masud, Muhammad Mehedi & Banna, Hasanul & Liya, Ma, 2015. "Long-run relationship between sectoral productivity and energy consumption in Malaysia: An aggregated and disaggregated viewpoint," Energy, Elsevier, vol. 86(C), pages 436-445.
    13. Rahman, Md. Saifur & Noman, Abu Hanifa Md. & Shahari, Farihana & Aslam, Mohamed & Gee, Chan Sok & Isa, Che Ruhana & Pervin, Sajeda, 2016. "Efficient energy consumption in industrial sectors and its effect on environment: A comparative analysis between G8 and Southeast Asian emerging economies," Energy, Elsevier, vol. 97(C), pages 82-89.
    14. Zheng Fang & Marcin Wolski, 2021. "Human capital, energy and economic growth in China: evidence from multivariate nonlinear Granger causality tests," Empirical Economics, Springer, vol. 60(2), pages 607-632, February.
    15. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    16. Fang, Zheng & Chen, Yang, 2017. "Human capital and energy in economic growth – Evidence from Chinese provincial data," Energy Economics, Elsevier, vol. 68(C), pages 340-358.
    17. Rahman, M.S. & Shahari, Farihana & Rahman, Mahfuzur & Noman, Abu Hanifa Md, 2017. "The interdependent relationship between sectoral productivity and disaggregated energy consumption in Malaysia: Markov Switching approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 752-759.
    18. Canh Q. Le & Hoang-Mai T. Bui, 2022. "Optimal economic restructuring to reduce carbon emissions intensity using the projected gradient algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6271-6287, May.
    19. Rahman, Md. Saifur & Noman, Abu Hanifa Md. & Shahari, Farihana, 2017. "Does economic growth in Malaysia depend on disaggregate energy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 640-647.
    20. Wu, Cheng-Feng & Wang, Chien-Ming & Chang, Tsangyao & Yuan, Chien-Chung, 2019. "The nexus of electricity and economic growth in major economies: The United States-India-China triangle," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:ecopln:v:51:y:2018:i:3:d:10.1007_s10644-017-9202-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.