IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v85y2015icp10-22.html
   My bibliography  Save this article

Demand response: A carbon-neutral resource?

Author

Listed:
  • Smith, Alexander M.
  • Brown, Marilyn A.

Abstract

Recent literature on demand response raises questions about the long-term capacity and carbon emissions impacts of expanding its deployment. To provide economy-wide insights into how demand response, capacity planning, and carbon emissions might interact in the future, we perform economic forecasts using a computational general equilibrium model based on the Energy Information Administration's National Energy Modeling System. We develop multiple scenarios of assumptions about the load-shifting and load reduction potential of demand response based on prior literature. The results of these scenarios suggest that demand response can defer large amounts of peak capacity construction. Contrary to expectations of increased carbon intensity, the results of our scenarios also suggest that demand response will have little impact on overall carbon emissions from electric power generation. This suggests that demand response can serve as a long-term, low-cost alternative for peak-hour load balancing without increasing carbon emissions.

Suggested Citation

  • Smith, Alexander M. & Brown, Marilyn A., 2015. "Demand response: A carbon-neutral resource?," Energy, Elsevier, vol. 85(C), pages 10-22.
  • Handle: RePEc:eee:energy:v:85:y:2015:i:c:p:10-22
    DOI: 10.1016/j.energy.2015.02.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215002224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    2. Thomas Taylor & Peter Schwarz & James Cochell, 2005. "24/7 Hourly Response to Electricity Real-Time Pricing with up to Eight Summers of Experience," Journal of Regulatory Economics, Springer, vol. 27(3), pages 235-262, January.
    3. Luciano De Castro, 2011. "The Economics of the Smart Grid," Discussion Papers 1544, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Falsafi, Hananeh & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming," Energy, Elsevier, vol. 64(C), pages 853-867.
    5. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    6. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    7. Gilbraith, Nathaniel & Powers, Susan E., 2013. "Residential demand response reduces air pollutant emissions on peak electricity demand days in New York City," Energy Policy, Elsevier, vol. 59(C), pages 459-469.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Jin & Dong, Jun & Liu, Dongran & Zhang, Yaoyu & Ma, Tongtao, 2022. "From peak shedding to low-carbon transitions: Customer psychological factors in demand response," Energy, Elsevier, vol. 238(PA).
    2. Hyun, Minwoo & Kim, Yeong Jae & Eom, Jiyong, 2020. "Assessing the impact of a demand-resource bidding market on an electricity generation portfolio and the environment," Energy Policy, Elsevier, vol. 147(C).
    3. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).
    4. Brown, Marilyn A. & Kim, Gyungwon & Smith, Alexander M. & Southworth, Katie, 2017. "Exploring the impact of energy efficiency as a carbon mitigation strategy in the U.S," Energy Policy, Elsevier, vol. 109(C), pages 249-259.
    5. Parrish, Bryony & Heptonstall, Phil & Gross, Rob & Sovacool, Benjamin K., 2020. "A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response," Energy Policy, Elsevier, vol. 138(C).
    6. Olkkonen, Ville & Ekström, Jussi & Hast, Aira & Syri, Sanna, 2018. "Utilising demand response in the future Finnish energy system with increased shares of baseload nuclear power and variable renewable energy," Energy, Elsevier, vol. 164(C), pages 204-217.
    7. Brown, Marilyn A. & Chapman, Oliver, 2021. "The size, causes, and equity implications of the demand-response gap," Energy Policy, Elsevier, vol. 158(C).
    8. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    9. Guo, Peiyang & Li, Victor O.K. & Lam, Jacqueline C.K., 2017. "Smart demand response in China: Challenges and drivers," Energy Policy, Elsevier, vol. 107(C), pages 1-10.
    10. Alexander Vaninsky, 2018. "Optimal environment-friendly economic restructuring: the United States–China cooperation case study," Economic Change and Restructuring, Springer, vol. 51(3), pages 189-220, August.
    11. Nikolaos Iliopoulos & Motoharu Onuki & Miguel Esteban, 2021. "Shedding Light on the Factors That Influence Residential Demand Response in Japan," Energies, MDPI, vol. 14(10), pages 1-23, May.
    12. Neves, Diana & Pina, André & Silva, Carlos A., 2018. "Assessment of the potential use of demand response in DHW systems on isolated microgrids," Renewable Energy, Elsevier, vol. 115(C), pages 989-998.
    13. Dahlke, Steven & Prorok, Matt, 2018. "Consumer savings, price, and emissions impacts of increasing demand response in the Midcontinent electricity market," OSF Preprints d83bu, Center for Open Science.
    14. Fera, M. & Macchiaroli, R. & Iannone, R. & Miranda, S. & Riemma, S., 2016. "Economic evaluation model for the energy Demand Response," Energy, Elsevier, vol. 112(C), pages 457-468.
    15. Bastida, Leire & Cohen, Jed J. & Kollmann, Andrea & Moya, Ana & Reichl, Johannes, 2019. "Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 455-462.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    2. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    3. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    4. Nikolaos Iliopoulos & Motoharu Onuki & Miguel Esteban, 2021. "Shedding Light on the Factors That Influence Residential Demand Response in Japan," Energies, MDPI, vol. 14(10), pages 1-23, May.
    5. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    6. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    7. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    8. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    9. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    10. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2019. "Double layer home energy supervision strategies based on demand response and plug-in electric vehicle control for flattening power load curves in a smart grid," Energy, Elsevier, vol. 167(C), pages 312-324.
    11. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    12. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    13. Rabiee, Abdorreza & Sadeghi, Mohammad & Aghaeic, Jamshid & Heidari, Alireza, 2016. "Optimal operation of microgrids through simultaneous scheduling of electrical vehicles and responsive loads considering wind and PV units uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 721-739.
    14. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    15. Feuerriegel, Stefan & Bodenbenner, Philipp & Neumann, Dirk, 2016. "Value and granularity of ICT and smart meter data in demand response systems," Energy Economics, Elsevier, vol. 54(C), pages 1-10.
    16. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
    17. Guo, Peiyang & Li, Victor O.K. & Lam, Jacqueline C.K., 2017. "Smart demand response in China: Challenges and drivers," Energy Policy, Elsevier, vol. 107(C), pages 1-10.
    18. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    19. Kamalanathan Ganesan & Jo~ao Tom'e Saraiva & Ricardo J. Bessa, 2021. "Functional Model of Residential Consumption Elasticity under Dynamic Tariffs," Papers 2111.11875, arXiv.org.
    20. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:85:y:2015:i:c:p:10-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.