IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v58y2021i2d10.1007_s10614-020-10044-y.html
   My bibliography  Save this article

Parallel Extended Path Method for Solving Perfect Foresight Models

Author

Listed:
  • N. B. Melnikov

    (Lomonosov Moscow State University
    RAS)

  • A. P. Gruzdev

    (Lomonosov Moscow State University)

  • M. G. Dalton

    (National Oceanic and Atmospheric Administration)

  • M. Weitzel

    (European Commission, Joint Research Centre)

  • B. C. O’Neill

    (University of Denver)

Abstract

We parallelize the extended path method for solving rational expectations models, and apply it to compute perfect foresight competitive equilibrium for the global economy with multiple goods, regions, industries, and households. At each iteration, first intertemporal variables are updated, then equations for intra-temporal variables are solved in parallel. We compare serial, and parallel, versions of the extended path method in high-performance computing environments based on scenarios with long time horizons that include future populations, economic growth, energy use, and carbon dioxide emissions. Relative to the serial version, the speedup factor for the parallel extended path method grows almost linearly up to about 30 times with 18 cores, and computing times reduced from over 10 h for the serial version down to about 20 min for the parallel version.

Suggested Citation

  • N. B. Melnikov & A. P. Gruzdev & M. G. Dalton & M. Weitzel & B. C. O’Neill, 2021. "Parallel Extended Path Method for Solving Perfect Foresight Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 517-534, August.
  • Handle: RePEc:kap:compec:v:58:y:2021:i:2:d:10.1007_s10614-020-10044-y
    DOI: 10.1007/s10614-020-10044-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-020-10044-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-020-10044-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dalton, Michael & O'Neill, Brian & Prskawetz, Alexia & Jiang, Leiwen & Pitkin, John, 2008. "Population aging and future carbon emissions in the United States," Energy Economics, Elsevier, vol. 30(2), pages 642-675, March.
    2. Xiaolin Ren & Matthias Weitzel & Brian C. O’Neill & Peter Lawrence & Prasanth Meiyappan & Samuel Levis & Edward J. Balistreri & Michael Dalton, 2018. "Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS)," Climatic Change, Springer, vol. 146(3), pages 517-531, February.
    3. Calvin, Katherine V. & Beach, Robert & Gurgel, Angelo & Labriet, Maryse & Loboguerrero Rodriguez, Ana Maria, 2016. "Agriculture, forestry, and other land-use emissions in Latin America," Energy Economics, Elsevier, vol. 56(C), pages 615-624.
    4. O'Neill, Brian C. & Ren, Xiaolin & Jiang, Leiwen & Dalton, Michael, 2012. "The effect of urbanization on energy use in India and China in the iPETS model," Energy Economics, Elsevier, vol. 34(S3), pages 339-345.
    5. Fair, Ray C & Taylor, John B, 1983. "Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 51(4), pages 1169-1185, July.
    6. Kober, Tom & Summerton, Philip & Pollitt, Hector & Chewpreecha, Unnada & Ren, Xiaolin & Wills, William & Octaviano, Claudia & McFarland, James & Beach, Robert & Cai, Yongxia & Calderon, Silvia & Fishe, 2016. "Macroeconomic impacts of climate change mitigation in Latin America: A cross-model comparison," Energy Economics, Elsevier, vol. 56(C), pages 625-636.
    7. Giorgio Pauletto & Manfred Gilli, 2000. "Parallel Krylov Methods for Econometric Model Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 16(1/2), pages 173-186, October.
    8. Warwick J. Mckibbin & Adele C. Morris & Peter J. Wilcoxen & Weifeng Liu, 2018. "The Role Of Border Carbon Adjustments In A U.S. Carbon Tax," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-41, February.
    9. Melnikov, N.B. & O'Neill, B.C. & Dalton, M.G., 2012. "Accounting for household heterogeneity in general equilibrium economic growth models," Energy Economics, Elsevier, vol. 34(5), pages 1475-1483.
    10. Jonathan Heathcote & Kjetil Storesletten & Giovanni L. Violante, 2009. "Quantitative Macroeconomics with Heterogeneous Households," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 319-354, May.
    11. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    12. Edward C. Prescott & Rajnish Mehra, 2005. "Recursive Competitive Equilibrium: The Case Of Homogeneous Households," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 11, pages 357-371, World Scientific Publishing Co. Pte. Ltd..
    13. Judd, Kenneth L., 2002. "The parametric path method: an alternative to Fair-Taylor and L-B-J for solving perfect foresight models," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1557-1583, August.
    14. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    15. Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2015. "Understanding the Great Recession," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 110-167, January.
    16. Juillard, Michel & Laxton, Douglas & McAdam, Peter & Pioro, Hope, 1998. "An algorithm competition: First-order iterations versus Newton-based techniques," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1291-1318, August.
    17. Greg Kaplan & Giovanni L. Violante, 2018. "Microeconomic Heterogeneity and Macroeconomic Shocks," Journal of Economic Perspectives, American Economic Association, vol. 32(3), pages 167-194, Summer.
    18. Gilli, Manfred & Pauletto, Giorgio, 1998. "Krylov methods for solving models with forward-looking variables," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1275-1289, August.
    19. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    20. Van Ha, Pham & Kompas, Tom, 2016. "Solving intertemporal CGE models in parallel using a singly bordered block diagonal ordering technique," Economic Modelling, Elsevier, vol. 52(PA), pages 3-12.
    21. Daniel Johansson & Paul Lucas & Matthias Weitzel & Erik Ahlgren & A. Bazaz & Wenying Chen & Michel Elzen & Joydeep Ghosh & Maria Grahn & Qiao-Mei Liang & Sonja Peterson & Basanta Pradhan & Bas Ruijven, 2015. "Multi-model comparison of the economic and energy implications for China and India in an international climate regime," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1335-1359, December.
    22. Babiker, Mustafa & Gurgel, Angelo & Paltsev, Sergey & Reilly, John, 2009. "Forward-looking versus recursive-dynamic modeling in climate policy analysis: A comparison," Economic Modelling, Elsevier, vol. 26(6), pages 1341-1354, November.
    23. Dixon, Peter B. & Pearson, K.R. & Picton, Mark R. & Rimmer, Maureen T., 2005. "Rational expectations for large CGE models: A practical algorithm and a policy application," Economic Modelling, Elsevier, vol. 22(6), pages 1001-1019, December.
    24. Kompas, Tom & Van Ha, Pham, 2019. "The ‘curse of dimensionality’ resolved: The effects of climate change and trade barriers in large dimensional modelling," Economic Modelling, Elsevier, vol. 80(C), pages 103-110.
    25. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    26. Angel Aguiar & Maksym Chepeliev & Erwin L. Corong & Robert McDougall & Dominique van der Mensbrugghe, 2019. "The GTAP Data Base: Version 10," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwei Xiong & Katsumasa Tanaka & Philippe Ciais & Daniel J. A. Johansson & Mariliis Lehtveer, 2022. "emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves," Papers 2212.12060, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Ruijven, Bas J. & Daenzer, Katie & Fisher-Vanden, Karen & Kober, Tom & Paltsev, Sergey & Beach, Robert H. & Calderon, Silvia Liliana & Calvin, Kate & Labriet, Maryse & Kitous, Alban & Lucena, Andr, 2016. "Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions," Energy Economics, Elsevier, vol. 56(C), pages 499-512.
    2. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Bo & Cui, Qi & Zhang, Bin, 2022. "Economic impact and energy transformation of different effort-sharing schemes to pursue 2 ℃ warming limit in China," Applied Energy, Elsevier, vol. 320(C).
    3. Cotterman, Turner, 2019. "Why Rapid and Deep Decarbonization isn’t Simple: Linking Bottom-up Socio-technical Decision-making Insights with Top-down Macroeconomic Analyses," Conference papers 333088, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    5. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    6. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    7. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    8. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    9. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    10. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    11. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    12. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    13. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    14. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    15. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    16. Julien CALAS & Antoine GODIN & Julie MAURIN (AFD) & and Etienne ESPAGNE (World Bank), 2022. "Global biodiversity scenarios: what do they tell us for biodiversity-related socioeconomic impacts?," Working Paper 1a39419b-ef1d-4b82-a7be-d, Agence française de développement.
    17. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    18. Moyer, Jonathan D. & Hedden, Steve, 2020. "Are we on the right path to achieve the sustainable development goals?," World Development, Elsevier, vol. 127(C).
    19. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    20. Ansari, Dawud & Holz, Franziska & Al-Kuhlani, Hashem, 2020. "Energy Outlooks Compared: Global and Regional Insights," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 21-42.

    More about this item

    Keywords

    Perfect foresight; Intertemporal general equilibrium; Economic growth; Iterative methods; Parallel computing; Energy economics; Climate impacts;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:58:y:2021:i:2:d:10.1007_s10614-020-10044-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.