IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v55y2020i4d10.1007_s10614-018-9872-z.html
   My bibliography  Save this article

Reducing Overcapacity in China’s Coal Industry: A Real Option Approach

Author

Listed:
  • Wei Wu

    (Xiamen University)

  • Boqiang Lin

    (Xiamen University)

Abstract

Coal accounts for more than 60% of China’s primary energy consumption. Due to the demand decline since 2013, the coal industry was facing the dilemmas of falling prices, overcapacity, and high debt ratios. Reduction of overcapacity of the coal industry has become a crucial task in China’s supply-side structural reform. This paper attempts to explain several issues related to overcapacity reduction in the coal industry. First, we analyze the characteristics of China’s coal market and the causes of over-capacity in the coal industry. It is revealed that the aggregate coal demand of China is price inelastic, and the coal enterprises own market power. In addition, we illustrate that current overcapacity is the result of enterprises’ rational expansion in the context of rapid growth in demand in the previous period. Second, different capacity reduction schemes are compared. The results suggest that some of the inefficient production capacity should be temporarily withdrawn from the market, rather than ordering all coal mine to limit production capacity in the same proportion. Third, we conduct a regression model to describe the long-term price trend of coal and establish a mean-reverting model to simulate the motion path of the coal price. According to the Monte Carlo simulation, we estimate the value of the real option of coal capacity and find it is higher than the capacity replacement cost. This demonstrates that the real option is economically feasible in application.

Suggested Citation

  • Wei Wu & Boqiang Lin, 2020. "Reducing Overcapacity in China’s Coal Industry: A Real Option Approach," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1073-1093, April.
  • Handle: RePEc:kap:compec:v:55:y:2020:i:4:d:10.1007_s10614-018-9872-z
    DOI: 10.1007/s10614-018-9872-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-018-9872-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-018-9872-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernanke, Ben & Gertler, Mark & Gilchrist, Simon, 1996. "The Financial Accelerator and the Flight to Quality," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 1-15, February.
    2. ZhongXiang Zhang, 2016. "Making the Transition to a Low-Carbon Economy: The Key Challenges for China," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 3(2), pages 187-202, May.
    3. Lin, Boqiang & Jia, Zhijie, 2018. "The energy, environmental and economic impacts of carbon tax rate and taxation industry: A CGE based study in China," Energy, Elsevier, vol. 159(C), pages 558-568.
    4. Zhang, ZhongXiang, "undated". "Making China the transition to a low-carbon economy: Key challenges and responses," Working Papers 249516, Australian National University, Centre for Climate Economics & Policy.
    5. Zhang, Xiliang & Karplus, Valerie J. & Qi, Tianyu & Zhang, Da & He, Jiankun, 2016. "Carbon emissions in China: How far can new efforts bend the curve?," Energy Economics, Elsevier, vol. 54(C), pages 388-395.
    6. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    7. Marta Biancardi & Giovanni Villani, 2017. "Robust Monte Carlo Method for R&D Real Options Valuation," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 481-498, March.
    8. Fergus Green & Nicholas Stern, 2017. "China's changing economy: implications for its carbon dioxide emissions," Climate Policy, Taylor & Francis Journals, vol. 17(4), pages 423-442, May.
    9. Wang, Delu & Wang, Yadong & Song, Xuefeng & Liu, Yun, 2018. "Coal overcapacity in China: Multiscale analysis and prediction," Energy Economics, Elsevier, vol. 70(C), pages 244-257.
    10. Zhihua Ding & Caicai Feng & Zhenhua Liu & Guangqiang Wang & Lingyun He & Manzhi Liu, 2017. "Coal price fluctuation mechanism in China based on system dynamics model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1151-1167, January.
    11. Lin, Boqiang & Wu, Wei, 2017. "Cost of long distance electricity transmission in China," Energy Policy, Elsevier, vol. 109(C), pages 132-140.
    12. Lin, Boqiang & Liu, Chang, 2016. "Why is electricity consumption inconsistent with economic growth in China?," Energy Policy, Elsevier, vol. 88(C), pages 310-316.
    13. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    14. Shi, Xunpeng & Rioux, Bertrand & Galkin, Philipp, 2018. "Unintended consequences of China’s coal capacity cut policy," Energy Policy, Elsevier, vol. 113(C), pages 478-486.
    15. Zhang, Yanfang & Zhang, Ming & Liu, Yue & Nie, Rui, 2017. "Enterprise investment, local government intervention and coal overcapacity: The case of China," Energy Policy, Elsevier, vol. 101(C), pages 162-169.
    16. Yin, Xiang & Chen, Wenying, 2013. "Trends and development of steel demand in China: A bottom–up analysis," Resources Policy, Elsevier, vol. 38(4), pages 407-415.
    17. Ouyang, Xiaoling & Wei, Xiaoyun & Sun, Chuanwang & Du, Gang, 2018. "Impact of factor price distortions on energy efficiency: Evidence from provincial-level panel data in China," Energy Policy, Elsevier, vol. 118(C), pages 573-583.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Shiyan & Jia, Zhijie, 2022. "The energy, environment and economy impact of coal resource tax, renewable investment, and total factor productivity growth," Resources Policy, Elsevier, vol. 77(C).
    2. Liu, Dandan & Wang, Delu & Mao, Jinqi, 2023. "Study on policy synergy strategy of the central government and local governments in the process of coal de-capacity: Based on a two-stage evolutionary game method," Resources Policy, Elsevier, vol. 80(C).
    3. Bolortuya Purev & Weida He, 2021. "Coal industrial supply chain network: Mongolian capabilities across the Asian market," Technium Social Sciences Journal, Technium Science, vol. 19(1), pages 401-411, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2021. "Exploring the dilemma of overcapacity governance in China's coal industry: A tripartite evolutionary game model," Resources Policy, Elsevier, vol. 71(C).
    2. Zhang, Weike & Meng, Jia & Tian, Xiaoli, 2020. "Does de-capacity policy enhance the total factor productivity of China's coal companies? A Regression Discontinuity design," Resources Policy, Elsevier, vol. 68(C).
    3. Cui, Lianbiao & Li, Rongjing & Song, Malin & Zhu, Lei, 2019. "Can China achieve its 2030 energy development targets by fulfilling carbon intensity reduction commitments?," Energy Economics, Elsevier, vol. 83(C), pages 61-73.
    4. Zhang, Yanfang & Shi, Xunpeng & Qian, Xiangyan & Chen, Sai & Nie, Rui, 2021. "Macroeconomic effect of energy transition to carbon neutrality: Evidence from China's coal capacity cut policy," Energy Policy, Elsevier, vol. 155(C).
    5. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2022. "Exploring the multidimensional effects of China's coal de-capacity policy: A regression discontinuity design," Resources Policy, Elsevier, vol. 75(C).
    6. Zhang, Yanfang & Nie, Rui & Shi, Xunpeng & Qian, Xiangyan & Wang, Ke, 2019. "Can energy-price regulations smooth price fluctuations? Evidence from China’s coal sector," Energy Policy, Elsevier, vol. 128(C), pages 125-135.
    7. Liu, Dandan & Wang, Delu, 2022. "Evaluation of the synergy degree of industrial de-capacity policies based on text mining: A case study of China's coal industry," Resources Policy, Elsevier, vol. 76(C).
    8. Yang, Qing & Zhang, Lei & Zhang, Jinsuo & Zou, Shaohui, 2021. "System simulation and policy optimization of China's coal production capacity deviation in terms of the economy, environment, and energy security," Resources Policy, Elsevier, vol. 74(C).
    9. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    10. Yihao Tian & Lijin Ding & Bin Yang & Feng Peng, 2022. "The Effects of De-Capacity Policy on Steel and Coal Firms’ Profitability: Evidence from China’s Listed Companies," Energies, MDPI, vol. 15(12), pages 1-17, June.
    11. Wang, Delu & Liu, Yifei & Wang, Yadong & Shi, Xunpeng & Song, Xuefeng, 2020. "Allocation of coal de-capacity quota among provinces in China: A bi-level multi-objective combinatorial optimization approach," Energy Economics, Elsevier, vol. 87(C).
    12. Xiang, Hongjin & Kuang, Yanxiang & He, Hongbo & Yao, Shujie, 2022. "Could tariffs reduce overcapacity and environmental pollution? Evidence from China’s adjustment of tariffs on coal," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 129-144.
    13. Wang, Di & Shen, Ye & Zhao, Yueying & He, Wei & Liu, Xue & Qian, Xiangyan & Lv, Tao, 2020. "Integrated assessment and obstacle factor diagnosis of China's scientific coal production capacity based on the PSR sustainability framework," Resources Policy, Elsevier, vol. 68(C).
    14. Roger Fouquet, 2012. "Economics of Energy and Climate Change: Origins, Developments and Growth," Working Papers 2012-08, BC3.
    15. Liu, Junling & Wang, Ke & Zou, Ji & Kong, Ying, 2019. "The implications of coal consumption in the power sector for China’s CO2 peaking target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Li, Zheng-Zheng & Su, Chi-Wei & Chang, Tsangyao & Lobonţ, Oana-Ramona, 2022. "Policy-driven or market-driven? Evidence from steam coal price bubbles in China," Resources Policy, Elsevier, vol. 78(C).
    17. Gao, Kang & Yuan, Yijun, 2022. "Does market-oriented reform make the industrial sector “Greener” in China? Fresh evidence from the perspective of capital-labor-energy market distortions," Energy, Elsevier, vol. 254(PA).
    18. Anna Creti & Bertrand Villeneuve, 2003. "Politique énergétique : aspects stratégiques de la question des approvisionnements," Economie & Prévision, La Documentation Française, vol. 158(2), pages 73-88.
    19. Xuguang Hao & Mei Song & Yunan Feng & Wen Zhang, 2019. "De-Capacity Policy Effect on China’s Coal Industry," Energies, MDPI, vol. 12(12), pages 1-16, June.
    20. Lin, C.Y. Cynthia, 2009. "An Empirical Dynamic Model of OPEC and Non-OPEC," Working Papers 225895, University of California, Davis, Department of Agricultural and Resource Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:55:y:2020:i:4:d:10.1007_s10614-018-9872-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.