IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2331-d240860.html
   My bibliography  Save this article

De-Capacity Policy Effect on China’s Coal Industry

Author

Listed:
  • Xuguang Hao

    (School of Management, China University of Mining &Technology (Beijing), Beijing 100083, China)

  • Mei Song

    (School of Management, China University of Mining &Technology (Beijing), Beijing 100083, China)

  • Yunan Feng

    (School of Management, China University of Mining &Technology (Beijing), Beijing 100083, China)

  • Wen Zhang

    (School of Management, China University of Mining &Technology (Beijing), Beijing 100083, China)

Abstract

Overcapacity in China’s coal industry has serious negative impacts on the rational allocation of coal resources and stable operation of the national economy. Since 2016, the Chinese government has implemented a series of de-capacity policies to optimise coal production capacity. Timely policy effect assessment is of great significance to the government to guide high-quality development of the coal industry. This paper first reviews the dilemma encountered by China’s coal industry prior to 2016, and then analyses the progress and effect of coal industry de-capacity. The main results are as follows: (1) The capacity reduction is mainly distributed in the central and southwestern regions. Most of the coal mines are state-owned, and there is a prominent worker resettlement problem. (2) The capacity optimisation policy has accelerated the implementation of the overall spatial planning of China’s coal supply. China’s coal production centre has shifted from the central and eastern regions to the west, and the industry’s high-quality development pattern has taken shape. (3) China’s coal industrial profitability has constantly been improving, industry concentration has increased significantly, and coal mining has become safer. (4) Due to the regional heterogeneity, the de-capacity policy effect has significant differences in coal production capacity and employee reduction in various regions. Finally, regarding the optimisation of China’s coal production capacity, some policy implications are given.

Suggested Citation

  • Xuguang Hao & Mei Song & Yunan Feng & Wen Zhang, 2019. "De-Capacity Policy Effect on China’s Coal Industry," Energies, MDPI, vol. 12(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2331-:d:240860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barzel, Yoram, 1970. "Excess Capacity in Monopolistic Competition," Journal of Political Economy, University of Chicago Press, vol. 78(5), pages 1142-1149, Sept.-Oct.
    2. Wang, Delu & Wan, Kaidi & Song, Xuefeng & Liu, Yun, 2019. "Provincial allocation of coal de-capacity targets in China in terms of cost, efficiency, and fairness," Energy Economics, Elsevier, vol. 78(C), pages 109-128.
    3. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    4. Lin, Jiang & Fridley, David & Lu, Hongyou & Price, Lynn & Zhou, Nan, 2018. "Has coal use peaked in China: Near-term trends in China's coal consumption," Energy Policy, Elsevier, vol. 123(C), pages 208-214.
    5. Yang, Qing & Hou, Xiaochao & Zhang, Lei, 2018. "Measurement of natural and cyclical excess capacity in China's coal industry," Energy Policy, Elsevier, vol. 118(C), pages 270-278.
    6. Shi, Xunpeng & Rioux, Bertrand & Galkin, Philipp, 2018. "Unintended consequences of China’s coal capacity cut policy," Energy Policy, Elsevier, vol. 113(C), pages 478-486.
    7. Zhang, Yanfang & Zhang, Ming & Liu, Yue & Nie, Rui, 2017. "Enterprise investment, local government intervention and coal overcapacity: The case of China," Energy Policy, Elsevier, vol. 101(C), pages 162-169.
    8. Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni G., 2010. "Thermodynamic assessment of IGCC power plants with hot fuel gas desulfurization," Applied Energy, Elsevier, vol. 87(11), pages 3374-3383, November.
    9. Shi, Xunpeng, 2013. "China's small coal mine policy in the 2000s: A case study of trusteeship and consolidation," Resources Policy, Elsevier, vol. 38(4), pages 598-604.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2022. "Exploring the multidimensional effects of China's coal de-capacity policy: A regression discontinuity design," Resources Policy, Elsevier, vol. 75(C).
    2. Ma, Gang & Li, Xu & Zheng, Jianping, 2020. "Efficiency and equity in regional coal de-capacity allocation in China: A multiple objective programming model based on Gini coefficient and Data Envelopment Analysis," Resources Policy, Elsevier, vol. 66(C).
    3. Liu, Dandan & Wang, Delu & Mao, Jinqi, 2023. "Study on policy synergy strategy of the central government and local governments in the process of coal de-capacity: Based on a two-stage evolutionary game method," Resources Policy, Elsevier, vol. 80(C).
    4. Zhang, Weike & Meng, Jia & Tian, Xiaoli, 2020. "Does de-capacity policy enhance the total factor productivity of China's coal companies? A Regression Discontinuity design," Resources Policy, Elsevier, vol. 68(C).
    5. Zhang, Rui & Qie, Xiaotong & Hu, Yanyong & Chen, Xue, 2022. "Does de-capacity policy promote the efficient and green development of the coal industry? –Based on the evidence of China," Resources Policy, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2021. "Exploring the dilemma of overcapacity governance in China's coal industry: A tripartite evolutionary game model," Resources Policy, Elsevier, vol. 71(C).
    2. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    3. Wang, Delu & Liu, Yifei & Wang, Yadong & Shi, Xunpeng & Song, Xuefeng, 2020. "Allocation of coal de-capacity quota among provinces in China: A bi-level multi-objective combinatorial optimization approach," Energy Economics, Elsevier, vol. 87(C).
    4. Wang, Di & Shen, Ye & Zhao, Yueying & He, Wei & Liu, Xue & Qian, Xiangyan & Lv, Tao, 2020. "Integrated assessment and obstacle factor diagnosis of China's scientific coal production capacity based on the PSR sustainability framework," Resources Policy, Elsevier, vol. 68(C).
    5. Zhang, Weike & Meng, Jia & Tian, Xiaoli, 2020. "Does de-capacity policy enhance the total factor productivity of China's coal companies? A Regression Discontinuity design," Resources Policy, Elsevier, vol. 68(C).
    6. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2022. "Exploring the multidimensional effects of China's coal de-capacity policy: A regression discontinuity design," Resources Policy, Elsevier, vol. 75(C).
    7. Wang, Xiaofei & Miao, Chenglin & Wang, Chongmei & Yin, Dawei & Chen, Shaojie & Chen, Lei & Li, Ke, 2022. "Coal production capacity allocation based on efficiency perspective—taking production mines in Shandong Province as an example," Energy Policy, Elsevier, vol. 171(C).
    8. Shi, Xunpeng & Rioux, Bertrand & Galkin, Philipp, 2018. "Unintended consequences of China’s coal capacity cut policy," Energy Policy, Elsevier, vol. 113(C), pages 478-486.
    9. Li, Zheng-Zheng & Su, Chi-Wei & Chang, Tsangyao & Lobonţ, Oana-Ramona, 2022. "Policy-driven or market-driven? Evidence from steam coal price bubbles in China," Resources Policy, Elsevier, vol. 78(C).
    10. Zhang, Yanfang & Shi, Xunpeng & Qian, Xiangyan & Chen, Sai & Nie, Rui, 2021. "Macroeconomic effect of energy transition to carbon neutrality: Evidence from China's coal capacity cut policy," Energy Policy, Elsevier, vol. 155(C).
    11. Zhang, Yanfang & Nie, Rui & Shi, Xunpeng & Qian, Xiangyan & Wang, Ke, 2019. "Can energy-price regulations smooth price fluctuations? Evidence from China’s coal sector," Energy Policy, Elsevier, vol. 128(C), pages 125-135.
    12. Liu, Dandan & Wang, Delu, 2022. "Evaluation of the synergy degree of industrial de-capacity policies based on text mining: A case study of China's coal industry," Resources Policy, Elsevier, vol. 76(C).
    13. Yang, Qing & Zhang, Lei & Zhang, Jinsuo & Zou, Shaohui, 2021. "System simulation and policy optimization of China's coal production capacity deviation in terms of the economy, environment, and energy security," Resources Policy, Elsevier, vol. 74(C).
    14. Zhang, Rui & Qie, Xiaotong & Hu, Yanyong & Chen, Xue, 2022. "Does de-capacity policy promote the efficient and green development of the coal industry? –Based on the evidence of China," Resources Policy, Elsevier, vol. 77(C).
    15. Liu, Dandan & Wang, Delu & Mao, Jinqi, 2023. "Study on policy synergy strategy of the central government and local governments in the process of coal de-capacity: Based on a two-stage evolutionary game method," Resources Policy, Elsevier, vol. 80(C).
    16. Yihao Tian & Lijin Ding & Bin Yang & Feng Peng, 2022. "The Effects of De-Capacity Policy on Steel and Coal Firms’ Profitability: Evidence from China’s Listed Companies," Energies, MDPI, vol. 15(12), pages 1-17, June.
    17. Xiang, Hongjin & Kuang, Yanxiang & He, Hongbo & Yao, Shujie, 2022. "Could tariffs reduce overcapacity and environmental pollution? Evidence from China’s adjustment of tariffs on coal," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 129-144.
    18. Ma, Gang & Li, Xu & Zheng, Jianping, 2020. "Efficiency and equity in regional coal de-capacity allocation in China: A multiple objective programming model based on Gini coefficient and Data Envelopment Analysis," Resources Policy, Elsevier, vol. 66(C).
    19. Yu Hao & Shang Gao & Yunxia Guo & Zhiqiang Gai & Haitao Wu, 2021. "Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: a comparative study between China and Germany for the period of 2000–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16848-16873, November.
    20. Xia, Dan & Zhang, Ling, 2022. "Coupling coordination degree between coal production reduction and CO2 emission reduction in coal industry," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2331-:d:240860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.