IDEAS home Printed from https://ideas.repec.org/a/jfr/ijfr11/v11y2020i4p346-356.html
   My bibliography  Save this article

Modelling and Forecasting the Volatility of Cryptocurrencies: A Comparison of Nonlinear GARCH-Type Models

Author

Listed:
  • Huthaifa Alqaralleh
  • Alaa Adden Abuhommous
  • Ahmad Alsaraireh

Abstract

This study is set out to model and forecast the cryptocurrency market by concentrating on several stylized features of cryptocurrencies. The results of this study assert the presence of an inherently nonlinear mean-reverting process, leading to the presence of asymmetry in the considered return series. Consequently, nonlinear GARCH-type models taking into account distributions of innovations that capture skewness, kurtosis and heavy tails constitute excellent tools for modelling returns in cryptocurrencies. Finally, it is found that, given the high volatility dynamics present in all cryptocurrencies, correct forecasting could help investors to assess the unique risk-return characteristics of a cryptocurrency, thus helping them to allocate their capital.

Suggested Citation

  • Huthaifa Alqaralleh & Alaa Adden Abuhommous & Ahmad Alsaraireh, 2020. "Modelling and Forecasting the Volatility of Cryptocurrencies: A Comparison of Nonlinear GARCH-Type Models," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 11(4), pages 346-356, July.
  • Handle: RePEc:jfr:ijfr11:v:11:y:2020:i:4:p:346-356
    DOI: 10.5430/ijfr.v11n4p346
    as

    Download full text from publisher

    File URL: http://www.sciedu.ca/journal/index.php/ijfr/article/view/17150/11269
    Download Restriction: no

    File URL: http://www.sciedu.ca/journal/index.php/ijfr/article/view/17150
    Download Restriction: no

    File URL: https://libkey.io/10.5430/ijfr.v11n4p346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mübariz Hasanov & Tolga Omay, 2011. "The Relationship Between Inflation, Output Growth, and Their Uncertainties: Evidence from Selected CEE Countries," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(0), pages 5-20, July.
    2. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Persistence in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 46(C), pages 141-148.
    3. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    4. Yukun Liu & Aleh Tsyvinski, 2018. "Risks and Returns of Cryptocurrency," NBER Working Papers 24877, National Bureau of Economic Research, Inc.
    5. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    6. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    7. Mohsen Bahmani-Oskooee & Sahar Bahmani & Ali M. Kutan & Dan Xi, 2019. "On the Asymmetric Effects of Exchange Rate Changes on the Demand for Money: Evidence from Emerging Economies," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 18(1), pages 1-22, April.
    8. Marie Briere & Kim Oosterlinck & Ariane Szafarz, 2015. "Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoins," Post-Print CEB, ULB -- Universite Libre de Bruxelles, vol. 16(6), pages 365-373.
    9. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    10. Marc Gronwald, 2014. "The Economics of Bitcoins - Market Characteristics and Price Jumps," CESifo Working Paper Series 5121, CESifo.
    11. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    12. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    13. Mohsen Bahmani-Oskooee & Abera Gelan, 2019. "Asymmetric effects of exchange rate changes on the demand for money in Africa," Applied Economics, Taylor & Francis Journals, vol. 51(31), pages 3365-3375, July.
    14. Mohsen Bahmani-Oskooee & Dan Xi & Sahar Bahmani, 2019. "More evidence on the asymmetric effects of exchange rate changes on the demand for money: evidence from Asian," Applied Economics Letters, Taylor & Francis Journals, vol. 26(6), pages 485-495, March.
    15. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    16. Tolga Omay, 2011. "The relationship between inflation, output growth, and their uncertainties: Nonlinear Multivariate GARCH-M evidence," Economics Bulletin, AccessEcon, vol. 31(4), pages 3006-3015.
    17. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    18. Takaishi, Tetsuya & Adachi, Takanori, 2018. "Taylor effect in Bitcoin time series," Economics Letters, Elsevier, vol. 172(C), pages 5-7.
    19. Baur, Dirk G. & Dimpfl, Thomas, 2018. "Asymmetric volatility in cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 148-151.
    20. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    21. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    22. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    23. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    24. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    25. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-158, February.
    26. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    27. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    28. Corbet, Shaen & Katsiampa, Paraskevi, 2020. "Asymmetric mean reversion of Bitcoin price returns," International Review of Financial Analysis, Elsevier, vol. 71(C).
    29. Dwyer, Gerald P., 2015. "The economics of Bitcoin and similar private digital currencies," Journal of Financial Stability, Elsevier, vol. 17(C), pages 81-91.
    30. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    31. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    32. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    33. Charfeddine, Lanouar & Maouchi, Youcef, 2019. "Are shocks on the returns and volatility of cryptocurrencies really persistent?," Finance Research Letters, Elsevier, vol. 28(C), pages 423-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nidhal Mgadmi & Azza Béjaoui & Wajdi Moussa, 2023. "Disentangling the Nonlinearity Effect in Cryptocurrency Markets During the Covid-19 Pandemic: Evidence from a Regime-Switching Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(3), pages 457-473, September.
    2. Li, Ke & Yuan, Weihong, 2021. "The nexus between industrial growth and electricity consumption in China – New evidence from a quantile-on-quantile approach," Energy, Elsevier, vol. 231(C).
    3. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    2. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    3. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    4. Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
    5. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    6. Gil-Alana, Luis Alberiko & Abakah, Emmanuel Joel Aikins & Rojo, María Fátima Romero, 2020. "Cryptocurrencies and stock market indices. Are they related?," Research in International Business and Finance, Elsevier, vol. 51(C).
    7. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    8. Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
    9. Siwen Zhou, 2021. "Exploring the driving forces of the Bitcoin currency exchange rate dynamics: an EGARCH approach," Empirical Economics, Springer, vol. 60(2), pages 557-606, February.
    10. Yue, Yao & Li, Xuerong & Zhang, Dingxuan & Wang, Shouyang, 2021. "How cryptocurrency affects economy? A network analysis using bibliometric methods," International Review of Financial Analysis, Elsevier, vol. 77(C).
    11. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    12. Omane-Adjepong, Maurice & Alagidede, Imhotep Paul, 2019. "Multiresolution analysis and spillovers of major cryptocurrency markets," Research in International Business and Finance, Elsevier, vol. 49(C), pages 191-206.
    13. Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
    14. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    15. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    16. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Olubusoye, Olusanya E., 2019. "How persistent and dynamic inter-dependent are pricing of Bitcoin to other cryptocurrencies before and after 2017/18 crash?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    17. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    18. Fung, Kennard & Jeong, Jiin & Pereira, Javier, 2022. "More to cryptos than bitcoin: A GARCH modelling of heterogeneous cryptocurrencies," Finance Research Letters, Elsevier, vol. 47(PA).
    19. Achraf Ghorbel & Wajdi Frikha & Yasmine Snene Manzli, 2022. "Testing for asymmetric non-linear short- and long-run relationships between crypto-currencies and stock markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 387-425, September.
    20. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jfr:ijfr11:v:11:y:2020:i:4:p:346-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gina Perry (email available below). General contact details of provider: http://ijfr.sciedupress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.