IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v531y2019ics0378437119309902.html
   My bibliography  Save this article

How persistent and dynamic inter-dependent are pricing of Bitcoin to other cryptocurrencies before and after 2017/18 crash?

Author

Listed:
  • Yaya, OlaOluwa S.
  • Ogbonna, Ahamuefula E.
  • Olubusoye, Olusanya E.

Abstract

The present paper investigates persistence and inter-dependence of bitcoin on other popular alternative coins. We employ fractional integration approach in our analysis of persistence, while a more recent fractional cointegration technique in VAR set-up, proposed by Johansen (2008), is used to investigate inter-dependence in pricing of the paired cryptocurrencies. Having partitioned the series into periods before and after the 2017/2018 cryptocurrency price crash, as determined by Bitcoin pricing, we obtain some interesting results. Higher persistence of price shocks is observed after the crash, which is probably due to speculative transactions among cryptocurrency traders, and more evidences of non-mean reversions are revealed, implying chances of further price fall in cryptocurrencies. Cointegration relationships between bitcoin and alternative coins exist in both periods, with weak correlations observed mostly in the post-crash period. Our results further indicate the possibility of market efficiency between pair of cryptocurrency. Generally, we hope the findings will serve as guide to investors in cryptocurrency markets.

Suggested Citation

  • Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Olubusoye, Olusanya E., 2019. "How persistent and dynamic inter-dependent are pricing of Bitcoin to other cryptocurrencies before and after 2017/18 crash?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
  • Handle: RePEc:eee:phsmap:v:531:y:2019:i:c:s0378437119309902
    DOI: 10.1016/j.physa.2019.121732
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119309902
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.
    3. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    4. Cheah, Eng-Tuck & Mishra, Tapas & Parhi, Mamata & Zhang, Zhuang, 2018. "Long Memory Interdependency and Inefficiency in Bitcoin Markets," Economics Letters, Elsevier, vol. 167(C), pages 18-25.
    5. Maheu, John M & McCurdy, Thomas H, 2000. "Identifying Bull and Bear Markets in Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 100-112, January.
    6. Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco & Vigne, Samuel A., 2018. "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation," Finance Research Letters, Elsevier, vol. 26(C), pages 145-149.
    7. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    8. Ciaian, Pavel & Rajcaniova, Miroslava & Kancs, d'Artis, 2018. "Virtual relationships: Short- and long-run evidence from BitCoin and altcoin markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 173-195.
    9. Koutmos, Dimitrios, 2018. "Return and volatility spillovers among cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 122-127.
    10. Luis A. Gil‐Alana, 2003. "Testing of Fractional Cointegration in Macroeconomic Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(4), pages 517-529, September.
    11. Morten Ø. Nielsen & Michal Ksawery Popiel, 2018. "A Matlab Program And User's Guide For The Fractionally Cointegrated Var Model," Working Paper 1330, Economics Department, Queen's University.
    12. Bouoiyour, Jamal & Selmi, Refk & Tiwari, Aviral, 2014. "Is Bitcoin business income or speculative bubble? Unconditional vs. conditional frequency domain analysis," MPRA Paper 59595, University Library of Munich, Germany.
    13. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Persistence in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 46(C), pages 141-148.
    14. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    15. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    16. Bouri, Elie & Gupta, Rangan & Lahiani, Amine & Shahbaz, Muhammad, 2018. "Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices," Resources Policy, Elsevier, vol. 57(C), pages 224-235.
    17. Johansen, Søren & Nielsen, Morten Ørregaard, 2016. "The Role Of Initial Values In Conditional Sum-Of-Squares Estimation Of Nonstationary Fractional Time Series Models," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1095-1139, October.
    18. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    19. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    20. Javier Biscarri & Fernando Gracia, 2004. "Stock market cycles and stock market development in Spain," Spanish Economic Review, Springer;Spanish Economic Association, vol. 6(2), pages 127-151, July.
    21. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    22. Ola Oluwa S. Yaya & Luis A. Gil‐Alana & Olanrewaju I. Shittu, 2015. "Fractional Integration and Asymmetric Volatility in European, American and Asian Bull and Bear Markets: Application to High‐frequency Stock Data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 20(3), pages 276-290, July.
    23. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    24. Borri, Nicola, 2019. "Conditional tail-risk in cryptocurrency markets," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 1-19.
    25. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    26. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    27. Gonzalez, Liliana & Powell, John G. & Shi, Jing & Wilson, Antony, 2005. "Two centuries of bull and bear market cycles," International Review of Economics & Finance, Elsevier, vol. 14(4), pages 469-486.
    28. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    29. Brauneis, Alexander & Mestel, Roland, 2019. "Cryptocurrency-portfolios in a mean-variance framework," Finance Research Letters, Elsevier, vol. 28(C), pages 259-264.
    30. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    31. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, Decembrie.
    32. Baur, Dirk G. & Dimpfl, Thomas, 2018. "Asymmetric volatility in cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 148-151.
    33. Kim, Thomas, 2017. "On the transaction cost of Bitcoin," Finance Research Letters, Elsevier, vol. 23(C), pages 300-305.
    34. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    35. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    36. Morten Ørregaard Nielsen & Michał Ksawery Popiel, 2018. "A Matlab program and user's guide for the fractionally cointegrated VAR model," Working Papers 1330, Queen's University, Department of Economics.
    37. Dwyer, Gerald P., 2015. "The economics of Bitcoin and similar private digital currencies," Journal of Financial Stability, Elsevier, vol. 17(C), pages 81-91.
    38. Adrian (Wai-Kong) Cheung & Eduardo Roca & Jen-Je Su, 2015. "Crypto-currency bubbles: an application of the Phillips-Shi-Yu (2013) methodology on Mt. Gox bitcoin prices," Applied Economics, Taylor & Francis Journals, vol. 47(23), pages 2348-2358, May.
    39. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    40. Cheung, Yin-Wong & Lai, Kon S, 1993. "A Fractional Cointegration Analysis of Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 103-112, January.
    41. Luis A. Gil-Alana & Javier Hualde, 2009. "Fractional Integration and Cointegration: An Overview and an Empirical Application," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 10, pages 434-469, Palgrave Macmillan.
    42. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    43. Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    2. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    3. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    4. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    5. Gil-Alana, Luis Alberiko & Abakah, Emmanuel Joel Aikins & Rojo, María Fátima Romero, 2020. "Cryptocurrencies and stock market indices. Are they related?," Research in International Business and Finance, Elsevier, vol. 51(C).
    6. Gideon Boako & Aviral Kumar Tiwari & David Roubaud, 2019. "Vine copula-based dependence and portfolio value-at-risk analysis of the cryptocurrency market," International Economics, CEPII research center, issue 158, pages 77-90.
    7. OlaOluwa S. Yaya & Ahamuefula E. Ogbonna & Robert Mudida & Nuruddeen Abu, 2021. "Market efficiency and volatility persistence of cryptocurrency during pre‐ and post‐crash periods of Bitcoin: Evidence based on fractional integration," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1318-1335, January.
    8. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    9. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    10. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    11. Omane-Adjepong, Maurice & Alagidede, Imhotep Paul, 2019. "Multiresolution analysis and spillovers of major cryptocurrency markets," Research in International Business and Finance, Elsevier, vol. 49(C), pages 191-206.
    12. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    13. Yaya, OlaOluwa S & Gil-Alana, Luis A., 2018. "High and Low Intraday Commodity Prices: A Fractional Integration and Cointegration Approach," MPRA Paper 90518, University Library of Munich, Germany.
    14. Achraf Ghorbel & Wajdi Frikha & Yasmine Snene Manzli, 2022. "Testing for asymmetric non-linear short- and long-run relationships between crypto-currencies and stock markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 387-425, September.
    15. Duan, Kun & Li, Zeming & Urquhart, Andrew & Ye, Jinqiang, 2021. "Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach," International Review of Financial Analysis, Elsevier, vol. 75(C).
    16. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    17. Wajdi Moussa & Nidhal Mgadmi & Rym Regaïeg & Abdelhafidh Othmani, 2020. "Non-linear adjustment of the Bitcoin–US dollar exchange rate," Digital Finance, Springer, vol. 2(1), pages 143-158, September.
    18. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    19. Yi, Eojin & Ahn, Kwangwon & Choi, M.Y., 2022. "Cryptocurrency: Not far from equilibrium," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    20. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.

    More about this item

    Keywords

    Cointegration; Cryptocurrency; Fractional integration; Fractional cointegration; Vector autoregression;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:531:y:2019:i:c:s0378437119309902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.