IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1330.html
   My bibliography  Save this paper

A Matlab Program And User's Guide For The Fractionally Cointegrated Var Model

Author

Listed:
  • Morten Ø. Nielsen

    (Queen's University and CREATES)

  • Michal Ksawery Popiel

    (Queen's University)

Abstract

This manual describes the usage of the accompanying freely available Matlab program for estimation and testing in the fractionally cointegrated vector autoregressive (FCVAR) model. This program replaces an earlier Matlab program by Nielsen and Morin (2014), and although the present Matlab program is not compatible with the earlier one, we encourage use of the new program.

Suggested Citation

  • Morten Ø. Nielsen & Michal Ksawery Popiel, 2018. "A Matlab Program And User's Guide For The Fractionally Cointegrated Var Model," Working Paper 1330, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1330
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/qed_wp_1330.pdf
    File Function: First version 2018
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Maggie E. C. Jones & Morten Ørregaard Nielsen & Michał Ksawery Popiel, 2014. "A fractionally cointegrated VAR analysis of economic voting and political support," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(4), pages 1078-1130, November.
    3. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    4. Sepideh Dolatabadi & Morten Ørregaard Nielsen & Ke Xu, 2015. "A Fractionally Cointegrated VAR Analysis of Price Discovery in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(4), pages 339-356, April.
    5. Andreas Noack Jensen & Morten Ørregaard Nielsen, 2014. "A Fast Fractional Difference Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 428-436, August.
    6. Dolatabadi, Sepideh & Nielsen, Morten Ørregaard & Xu, Ke, 2016. "A fractionally cointegrated VAR model with deterministic trends and application to commodity futures markets," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 623-639.
    7. Morten Ø. Nielsen & Lealand Morin, 2014. "Fcvarmodel.m: A Matlab Software Package For Estimation And Testing In The Fractionally Cointegrated Var Model," Working Paper 1273, Economics Department, Queen's University.
    8. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    9. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    10. H. Peter Boswijk & Jurgen A. Doornik, 2004. "Identifying, estimating and testing restricted cointegrated systems: An overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(4), pages 440-465, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Boca Saravia & Gabriel Rodríguez, 2022. "Presidential approval in Peru: an empirical analysis using a fractionally cointegrated VAR," Economic Change and Restructuring, Springer, vol. 55(3), pages 1973-2010, August.
    2. Sepideh Dolatabadi & Morten Ørregaard Nielsen & Ke Xu, 2015. "A Fractionally Cointegrated VAR Analysis of Price Discovery in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(4), pages 339-356, April.
    3. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    4. Sepideh Dolatabadi & Paresh Kumar Narayan & Morten Ørregaard Nielsen & Ke Xu, 2018. "Economic significance of commodity return forecasts from the fractionally cointegrated VAR model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 219-242, February.
    5. Nikolaos Stoupos & Apostolos Kiohos, 2022. "Euro Area: Towards a European Common Bond? – Empirical Evidence from the Sovereign Debt Markets," Journal of Common Market Studies, Wiley Blackwell, vol. 60(4), pages 1019-1046, July.
    6. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2020. "Modelling Loans to Non-Financial Corporations within the Eurozone: A Long-Memory Approach," CESifo Working Paper Series 8674, CESifo.
    7. Samet Gunay, 2018. "Fractionally Cointegrated Vector Autoregression Model: Evaluation of High/Low and Close/Open Spreads for Precious Metals," SAGE Open, , vol. 8(4), pages 21582440188, November.
    8. Carlos D. Ramirez, 2024. "The effect of economic policy uncertainty under fractional integration," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 23(1), pages 89-110, January.
    9. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    10. Morten Ørregaard Nielsen & Sergei S. Shibaev, 2015. "Forecasting daily political opinion polls using the fractionally cointegrated VAR model," Working Paper 1340, Economics Department, Queen's University.
    11. Maggie E. C. Jones & Morten Ørregaard Nielsen & Michał Ksawery Popiel, 2014. "A fractionally cointegrated VAR analysis of economic voting and political support," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(4), pages 1078-1130, November.
    12. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," CREATES Research Papers 2019-02, Department of Economics and Business Economics, Aarhus University.
    13. Bravo Caro, José Manuel & Golpe, Antonio A. & Iglesias, Jesús & Vides, José Carlos, 2020. "A new way of measuring the WTI – Brent spread. Globalization, shock persistence and common trends," Energy Economics, Elsevier, vol. 85(C).
    14. Abbritti, Mirko & Carcel, Hector & Gil-Alana, Luis & Moreno, Antonio, 2023. "Term premium in a fractionally cointegrated yield curve," Journal of Banking & Finance, Elsevier, vol. 149(C).
    15. Chen, Yu-Lun & Xu, Ke, 2021. "The impact of RMB’s SDR inclusion on price discovery in onshore-offshore markets," Journal of Banking & Finance, Elsevier, vol. 127(C).
    16. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    17. Søren Johansen & Morten Ørregaard Nielsen, 2019. "Nonstationary Cointegration in the Fractionally Cointegrated VAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 519-543, July.
    18. Søren Johansen & Morten Ørregaard Nielsen, 2018. "Testing the CVAR in the Fractional CVAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 836-849, November.
    19. Afsin Sahin, 2019. "Loom of Symmetric Pass-Through," Economies, MDPI, vol. 7(1), pages 1-25, February.
    20. Stoupos, Nikolaos & Kiohos, Apostolos, 2021. "Energy commodities and advanced stock markets: A post-crisis approach," Resources Policy, Elsevier, vol. 70(C).

    More about this item

    Keywords

    cofractional process; cointegration rank; computer program; fractional autoregressive model; fractional cointegration; fractional unit root; Matlab; VAR model;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.