IDEAS home Printed from https://ideas.repec.org/a/ijm/journl/v7y2014i1p127-157.html
   My bibliography  Save this article

Constructing an Urban Microsimulation Model to Assess the Influence of Demographics on Heat Consumption

Author

Listed:
  • M. Esteban Muñoz H.

    (Technical Urban Infrastructure Systems Group, HafenCity, University Hamburg)

  • Irene Peters

    (Technical Urban Infrastructure Systems Group, HafenCity, University Hamburg)

Abstract

We present ongoing work on the construction of a spatial microsimulation model to assess the influence of demographics on residential heat consumption for Hamburg, Germany. Demographics are important for urban energy planning as: (1) Buildings are becoming more energy-efficient and building occupant behaviour accounts for a growing share in the variation of consumption; (2) building occupant needs are changing along with demographic change; and (3) the share of small decentralized district heating grids, in which fewer customers mean less averaging out of heterogeneous occupant profiles, is set to play a bigger role in the countrys heat supply. We construct a spatial microdata set for the city of Hamburg (of roughly 1.8 million inhabitants and 370 000 buildings), with households populating geo-referenced buildings, in three steps: (a) Synthesizing the population of small scale statistical areas, comprising up to around 2000 people (we do this by selecting households recorded in the German microcensus and fitting them into the statistical areas); (b) assigning energy relevant properties to the geo-reference buildings from the Hamburg digital cadaster (we do this by making use of a well-established building typology developed for energy assessment) and constructing dwelling units in these buildings; and (c) matching households to the dwelling units in these buildings (which we do again by using household data from the microcensus). This last stepallocating households to buildingsmay be the most interesting and challenging task. As of to date, we use a combinatorial optimization algorithm to achieve this. Once we have a microsimulation model of buildings and households living in them, including their demographic composition, the range of questions that can be explored is immense. The illustration presented here is a simple heat balance computation of individual buildings, using the constructed socio-demographic data and the digital cadaster data as input parameters.

Suggested Citation

  • M. Esteban Muñoz H. & Irene Peters, 2014. "Constructing an Urban Microsimulation Model to Assess the Influence of Demographics on Heat Consumption," International Journal of Microsimulation, International Microsimulation Association, vol. 7(1), pages 127-157.
  • Handle: RePEc:ijm:journl:v:7:y:2014:i:1:p:127-157
    as

    Download full text from publisher

    File URL: http://microsimulation.org/IJM/V7_1/6_IJM_7_1_Munoz_Peters.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azizur Rahman & Ann Harding & Robert Tanton & Shuangzhe Liu, 2010. "Methodological Issues in Spatial Microsimulation Modelling for Small Area Estimation," International Journal of Microsimulation, International Microsimulation Association, vol. 3(2), pages 3-22.
    2. Liao, Huei-Chu & Chang, Tsai-Feng, 2002. "Space-heating and water-heating energy demands of the aged in the US," Energy Economics, Elsevier, vol. 24(3), pages 267-284, May.
    3. Kirk Harland & Alison Heppenstall & Dianna Smith & Mark Birkin, 2012. "Creating Realistic Synthetic Populations at Varying Spatial Scales: A Comparative Critique of Population Synthesis Techniques," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(1), pages 1-1.
    4. Caputo, Paola & Costa, Gaia & Ferrari, Simone, 2013. "A supporting method for defining energy strategies in the building sector at urban scale," Energy Policy, Elsevier, vol. 55(C), pages 261-270.
    5. van Raaij, W. Fred & Verhallen, Theo M. M., 1983. "Patterns of residential energy behavior," Journal of Economic Psychology, Elsevier, vol. 4(1-2), pages 85-106, October.
    6. Druckman, A. & Jackson, T., 2008. "Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model," Energy Policy, Elsevier, vol. 36(8), pages 3167-3182, August.
    7. P Williamson & M Birkin & P H Rees, 1998. "The Estimation of Population Microdata by Using Data from Small Area Statistics and Samples of Anonymised Records," Environment and Planning A, , vol. 30(5), pages 785-816, May.
    8. Singh, Manoj Kumar & Mahapatra, Sadhan & Teller, Jacques, 2013. "An analysis on energy efficiency initiatives in the building stock of Liege, Belgium," Energy Policy, Elsevier, vol. 62(C), pages 729-741.
    9. Scott, Alex, 1980. "The economics of house heating," Energy Economics, Elsevier, vol. 2(3), pages 130-141, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trond Husby & Olga Ivanova & Mark Thissen, 2018. "Simulating the Joint Distribution of Individuals, Households and Dwellings in Small Areas," International Journal of Microsimulation, International Microsimulation Association, vol. 11(2), pages 169-190.
    2. M. Esteban Muñoz H. & Ivan Dochev & Hannes Seller & Irene Peters, 2016. "Constructing a Synthetic City for Estimating Spatially Disaggregated Heat Demand," International Journal of Microsimulation, International Microsimulation Association, vol. 9(3), pages 66-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Esteban Muñoz H. & Ivan Dochev & Hannes Seller & Irene Peters, 2016. "Constructing a Synthetic City for Estimating Spatially Disaggregated Heat Demand," International Journal of Microsimulation, International Microsimulation Association, vol. 9(3), pages 66-88.
    2. Véronique Vasseur & Anne-Francoise Marique, 2019. "Households’ Willingness to Adopt Technological and Behavioral Energy Savings Measures: An Empirical Study in The Netherlands," Energies, MDPI, vol. 12(22), pages 1-25, November.
    3. Lovelace, Robin & Ballas, Dimitris & Watson, Matt, 2014. "A spatial microsimulation approach for the analysis of commuter patterns: from individual to regional levels," Journal of Transport Geography, Elsevier, vol. 34(C), pages 282-296.
    4. Robert Tanton & Paul Williamson & Ann Harding, 2014. "Comparing Two Methods of Reweighting a Survey File to Small Area Data," International Journal of Microsimulation, International Microsimulation Association, vol. 7(1), pages 76-99.
    5. Ma, Lu & Srinivasan, Sivaramakrishnan, 2016. "An empirical assessment of factors affecting the accuracy of target-year synthetic populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 247-264.
    6. repec:ijm:journl:v109:y:2017:i:1:p:167-200 is not listed on IDEAS
    7. Di Turi, Silvia & Stefanizzi, Pietro, 2015. "Energy analysis and refurbishment proposals for public housing in the city of Bari, Italy," Energy Policy, Elsevier, vol. 79(C), pages 58-71.
    8. Huebner, Gesche M. & Shipworth, David, 2017. "All about size? – The potential of downsizing in reducing energy demand," Applied Energy, Elsevier, vol. 186(P2), pages 226-233.
    9. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
    10. Ian Philips & Graham Clarke & David Watling, 2017. "A Fine Grained Hybrid Spatial Microsimulation Technique for Generating Detailed Synthetic Individuals from Multiple Data Sources: An Application To Walking And Cycling," International Journal of Microsimulation, International Microsimulation Association, vol. 10(1), pages 167-200.
    11. Wang, Xia & Fang, Yuan & Cai, Weiguang & Ding, Chao & Xie, Yupei, 2022. "Heating demand with heterogeneity in residential households in the hot summer and cold winter climate zone in China -A quantile regression approach," Energy, Elsevier, vol. 247(C).
    12. Harold, Jason & Lyons, Seán & Cullinan, John, 2015. "The determinants of residential gas demand in Ireland," Energy Economics, Elsevier, vol. 51(C), pages 475-483.
    13. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    14. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
    15. Romero-Jordán, Desiderio & del Río, Pablo & Peñasco, Cristina, 2016. "An analysis of the welfare and distributive implications of factors influencing household electricity consumption," Energy Policy, Elsevier, vol. 88(C), pages 361-370.
    16. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    17. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    18. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    19. Guo, P. & Lam, J. & Li, V., 2018. "A novel machine learning approach for identifying the drivers of domestic electricity users’ price responsiveness," Cambridge Working Papers in Economics 1844, Faculty of Economics, University of Cambridge.
    20. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    21. Belaïd, Fateh & Joumni, Haitham, 2020. "Behavioral attitudes towards energy saving: Empirical evidence from France," Energy Policy, Elsevier, vol. 140(C).

    More about this item

    Keywords

    Heat consumption; digital cadaster; building stock; spatial microsimulation; combinatorial optimization;
    All these keywords.

    JEL classification:

    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijm:journl:v:7:y:2014:i:1:p:127-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jinjing Li (email available below). General contact details of provider: http://www.microsimulation.org/ijm/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.