IDEAS home Printed from https://ideas.repec.org/a/ibf/gjbres/v6y2012i1p77-89.html
   My bibliography  Save this article

Evidence On The Future Prospects Of Indian Thermal Power Sector In The Perspective Of Depleting Coal Reserve

Author

Listed:
  • Sukanya Ghosh
  • P.P. Sengupta
  • Biman Maity

Abstract

Increasing industrial growth throughout the world largely depends on availability of electricity. The overall situation in the power sector provides an optimistic view. However, insight into the thermal power industry provides a bleak picture. Thermal power stations mostly depend upon coal as a basic raw material. Economists project that India has a little over 250 billion metric tons of coal reserve to sustain continued and progressive demand for thermal power generation in the next 40-50 years. Indian thermal stations have started importing expensive coal from other countries to maintain generation and supply. Every thermal power station emits CO2. Suspended Particulate Matter (SPM), fly ash and effluents create health hazards and contribute to global warming. This paper develops a model based on Auto Regressive Integrated Moving Average (ARIMA) to depict the future prospects of coal based thermal power sector of India. The evidence shows that India needs to identify alternative sources of power generation to grow without damaging world and maintaining sustainability.

Suggested Citation

  • Sukanya Ghosh & P.P. Sengupta & Biman Maity, 2012. "Evidence On The Future Prospects Of Indian Thermal Power Sector In The Perspective Of Depleting Coal Reserve," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 6(1), pages 77-89.
  • Handle: RePEc:ibf:gjbres:v:6:y:2012:i:1:p:77-89
    as

    Download full text from publisher

    File URL: http://www.theibfr2.com/RePEc/ibf/gjbres/gjbr-v6n1-2012/GJBR-V6N1-2012-9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Koomey & Paul Craig & Ashok Gadgil & David Lorenzetti, 2003. "Improving Long-Range Energy Modeling: A Plea for Historical Retrospectives," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 75-92.
    2. Morana, Claudio, 2001. "A semiparametric approach to short-term oil price forecasting," Energy Economics, Elsevier, vol. 23(3), pages 325-338, May.
    3. Lynch, Michael C., 2002. "Forecasting oil supply: theory and practice," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(2), pages 373-389.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Tianle & Zhou, Fangxing & Du, Min & Du, Qunyang & Zhou, Shirong, 2023. "Fluctuation in the global oil market, stock market volatility, and economic policy uncertainty: A study of the US and China," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 377-387.
    2. Baomin Dong & Xuefeng Li & Boqiang Lin, 2010. "Forecasting Long-Run Coal Price in China: A Shifting Trend Time-Series Approach," Review of Development Economics, Wiley Blackwell, vol. 14(s1), pages 499-519, August.
    3. de Albuquerquemello, Vinícius Phillipe & de Medeiros, Rennan Kertlly & da Nóbrega Besarria, Cássio & Maia, Sinézio Fernandes, 2018. "Forecasting crude oil price: Does exist an optimal econometric model?," Energy, Elsevier, vol. 155(C), pages 578-591.
    4. Mark Lijesen, 2004. "Increasing the reliability of electricity production: a cost-benefit analysis," CPB Document 52.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    5. Bernard, Jean-Thomas & Khalaf, Lynda & Kichian, Maral & Yelou, Clement, 2018. "Oil Price Forecasts For The Long Term: Expert Outlooks, Models, Or Both?," Macroeconomic Dynamics, Cambridge University Press, vol. 22(3), pages 581-599, April.
    6. Tao, Zaipu & Li, Mingyu, 2007. "What is the limit of Chinese coal supplies--A STELLA model of Hubbert Peak," Energy Policy, Elsevier, vol. 35(6), pages 3145-3154, June.
    7. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    8. Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
    9. Mingming, Tang & Jinliang, Zhang, 2012. "A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices," Journal of Economics and Business, Elsevier, vol. 64(4), pages 275-286.
    10. Jakobsson, Kristofer & Söderbergh, Bengt & Höök, Mikael & Aleklett, Kjell, 2009. "How reasonable are oil production scenarios from public agencies?," Energy Policy, Elsevier, vol. 37(11), pages 4809-4818, November.
    11. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    12. Aune, Finn Roar & Mohn, Klaus & Osmundsen, Petter & Rosendahl, Knut Einar, 2010. "Financial market pressure, tacit collusion and oil price formation," Energy Economics, Elsevier, vol. 32(2), pages 389-398, March.
    13. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    14. Jeffrey A Frankel & Andrew K Rose, 2010. "Determinants of Agricultural and Mineral Commodity Prices," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
    15. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    16. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
    17. Matteo Manera & Chiara Longo & Anil Markandya & Elisa Scarpa, 2007. "Evaluating the Empirical Performance of Alternative Econometric Models for Oil Price Forecasting," Working Papers 2007.4, Fondazione Eni Enrico Mattei.
    18. Johannes Bollen & T. Manders & Machiel Mulder, 2004. "Four futures for energy markets and climate change," CPB Special Publication 52, CPB Netherlands Bureau for Economic Policy Analysis.
    19. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    20. Benjamin R. Auer, 2021. "Have trend-following signals in commodity futures markets become less reliable in recent years?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(4), pages 533-553, December.

    More about this item

    Keywords

    Insight; CO2; SPM; Fly ash; Global warming; ARIMA Model; Sustainability;
    All these keywords.

    JEL classification:

    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibf:gjbres:v:6:y:2012:i:1:p:77-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mercedes Jalbert (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.