IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i7p3979-3984.html
   My bibliography  Save this article

Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network

Author

Listed:
  • Movagharnejad, Kamyar
  • Mehdizadeh, Bahman
  • Banihashemi, Morteza
  • Kordkheili, Masoud Sheikhi

Abstract

In this paper we have investigated the differences between the prices of different commercial oils of the Persian Gulf region. The prices of 7 different crude oils from Iran, Kuwait, Saudi Arabia, Oman, Abu Dhabi and Dubai were compared with the benchmark light oil of Saudi Arabia over the period January 2000–April 2010. A neural network is introduced to forecast the price of any commercial oil in these crude oils, provided that the price of the benchmark light oil of Saudi Arabia is already known or is predicted by another forecasting method. The designed neural network is able to predict the differences in the oil prices with an average error of 8.82% for testing and 7.24% for training data. It is claimed that the present method can promote the forecasting power of existing models to predict the price of any commercial oil instead of an average or benchmark value.

Suggested Citation

  • Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:7:p:3979-3984
    DOI: 10.1016/j.energy.2011.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211003197
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    2. Gulen, S. Gurcan, 1998. "Efficiency in the crude oil futures market," Journal of Energy Finance & Development, Elsevier, vol. 3(1), pages 13-21.
    3. Pao, H.T., 2009. "Forecasting energy consumption in Taiwan using hybrid nonlinear models," Energy, Elsevier, vol. 34(10), pages 1438-1446.
    4. Kalogirou, Soteris A. & Bojic, Milorad, 2000. "Artificial neural networks for the prediction of the energy consumption of a passive solar building," Energy, Elsevier, vol. 25(5), pages 479-491.
    5. Warr, B.S. & Ayres, R.U., 2010. "Evidence of causality between the quantity and quality of energy consumption and economic growth," Energy, Elsevier, vol. 35(4), pages 1688-1693.
    6. Colorado, D. & Ali, M.E. & García-Valladares, O. & Hernández, J.A., 2011. "Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution," Energy, Elsevier, vol. 36(2), pages 854-863.
    7. Abosedra, Salah & Baghestani, Hamid, 2004. "On the predictive accuracy of crude oil futures prices," Energy Policy, Elsevier, vol. 32(12), pages 1389-1393, August.
    8. Lotfalipour, Mohammad Reza & Falahi, Mohammad Ali & Ashena, Malihe, 2010. "Economic growth, CO2 emissions, and fossil fuels consumption in Iran," Energy, Elsevier, vol. 35(12), pages 5115-5120.
    9. Kalogirou, Soteris A., 2000. "Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks," Applied Energy, Elsevier, vol. 66(1), pages 63-74, May.
    10. Abramson, Bruce & Finizza, Anthony, 1991. "Using belief networks to forecast oil prices," International Journal of Forecasting, Elsevier, vol. 7(3), pages 299-315, November.
    11. Awerbuch, Shimon & Sauter, Raphael, 2006. "Exploiting the oil-GDP effect to support renewables deployment," Energy Policy, Elsevier, vol. 34(17), pages 2805-2819, November.
    12. Lanza, Alessandro & Manera, Matteo & Giovannini, Massimo, 2005. "Modeling and forecasting cointegrated relationships among heavy oil and product prices," Energy Economics, Elsevier, vol. 27(6), pages 831-848, November.
    13. Gori, F. & Ludovisi, D. & Cerritelli, P.F., 2007. "Forecast of oil price and consumption in the short term under three scenarios: Parabolic, linear and chaotic behaviour," Energy, Elsevier, vol. 32(7), pages 1291-1296.
    14. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    15. Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
    16. Wirl, Franz, 1992. "Impact on world oil prices when larger and fewer producers emerge from a political restructuring of the Middle East," Energy, Elsevier, vol. 17(4), pages 367-375.
    17. Gallo, Andres & Mason, Paul & Shapiro, Steve & Fabritius, Michael, 2010. "What is behind the increase in oil prices? Analyzing oil consumption and supply relationship with oil price," Energy, Elsevier, vol. 35(10), pages 4126-4141.
    18. Morana, Claudio, 2001. "A semiparametric approach to short-term oil price forecasting," Energy Economics, Elsevier, vol. 23(3), pages 325-338, May.
    19. Benghanem, Mohamed & Mellit, Adel, 2010. "Radial Basis Function Network-based prediction of global solar radiation data: Application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia," Energy, Elsevier, vol. 35(9), pages 3751-3762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manel Hamdi & Chaker Aloui, 2015. "Forecasting Crude Oil Price Using Artificial Neural Networks: A Literature Survey," Economics Bulletin, AccessEcon, vol. 35(2), pages 1339-1359.
    2. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    3. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    4. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    5. Mingming, Tang & Jinliang, Zhang, 2012. "A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices," Journal of Economics and Business, Elsevier, vol. 64(4), pages 275-286.
    6. Theodore Syriopoulos & Michael Tsatsaronis & Ioannis Karamanos, 2021. "Support Vector Machine Algorithms: An Application to Ship Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 55-87, January.
    7. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    8. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    10. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    11. Xie Haibin & Zhou Mo & Yu Mei & Hu Yi, 2014. "Forecasting the Crude Oil Price with Extreme Values," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 193-205, June.
    12. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    13. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    14. Wang, Minggang & Tian, Lixin & Zhou, Peng, 2018. "A novel approach for oil price forecasting based on data fluctuation network," Energy Economics, Elsevier, vol. 71(C), pages 201-212.
    15. Wu, Xuedong & Mao, Jianxu & Du, Zhaoping & Chang, Yanchao, 2013. "Online training algorithms based single multiplicative neuron model for energy consumption forecasting," Energy, Elsevier, vol. 59(C), pages 126-132.
    16. Liu, Weiping & Wang, Chengzhu & Li, Yonggang & Liu, Yishun & Huang, Keke, 2021. "Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    17. Chul-Yong Lee & Sung-Yoon Huh, 2017. "Forecasting Long-Term Crude Oil Prices Using a Bayesian Model with Informative Priors," Sustainability, MDPI, vol. 9(2), pages 1-15, January.
    18. Kljajić, Miroslav & Gvozdenac, Dušan & Vukmirović, Srdjan, 2012. "Use of Neural Networks for modeling and predicting boiler's operating performance," Energy, Elsevier, vol. 45(1), pages 304-311.
    19. Jiang Wu & Yu Chen & Tengfei Zhou & Taiyong Li, 2019. "An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting," Energies, MDPI, vol. 12(7), pages 1-23, April.
    20. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:7:p:3979-3984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.