IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14824-d1258741.html
   My bibliography  Save this article

Factors Affecting the Adoption of Digital Technology by Farmers in China: A Systematic Literature Review

Author

Listed:
  • Luwen Cui

    (School of Business, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Weiwei Wang

    (School of Business, Nanjing University of Information Science and Technology, Nanjing 210044, China)

Abstract

Increasing pressure for food security and environmental sustainability has highlighted the need to switch from conventional agricultural methods to advanced agricultural practices. Digital agricultural technologies are considered promising solutions for sustainable intensification of food production and environmental protection. Despite significant promotional efforts initiated in recent years in China, the adoption rate remains low. The objective of this study is to gain insight into the factors affecting the adoption of on-farm digital technologies in China using a systematic review approach that analyzes 10 relevant studies. Data regarding methodological aspects and results are extracted. We identify 19 key adoption drivers that are related to socioeconomic, agroecological, technological, institutional, psychological, and behavioral factors. There is a predominance of ex-ante studies that use stated preference methods. We conclude with a discussion of the design of policy incentives to induce the adoption of digital technologies. Additionally, the review points to the limitations of existing research and suggests approaches that can be adopted for future investigations. This review provides meaningful implications for the development of future efforts to promote digital transformation for sustainable agriculture in China.

Suggested Citation

  • Luwen Cui & Weiwei Wang, 2023. "Factors Affecting the Adoption of Digital Technology by Farmers in China: A Systematic Literature Review," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14824-:d:1258741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junjin Chen & Hong Zhou, 2023. "The Role of Contract Farming in Green Smart Agricultural Technology," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    2. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    3. Zhanqiang Zhou & Yuehua Zhang & Zhongbao Yan, 2022. "Will Digital Financial Inclusion Increase Chinese Farmers’ Willingness to Adopt Agricultural Technology?," Agriculture, MDPI, vol. 12(10), pages 1-21, September.
    4. Shen, Zhiyang & Wang, Songkai & Boussemart, Jean-Philippe & Hao, Yu, 2022. "Digital transition and green growth in Chinese agriculture," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Yi Cai & Wene Qi & Famin Yi, 2023. "Smartphone use and willingness to adopt digital pest and disease management: Evidence from litchi growers in rural China," Agribusiness, John Wiley & Sons, Ltd., vol. 39(1), pages 131-147, January.
    6. Ruiyu Sun & Siyao Zhang & Tianyu Wang & Jiarui Hu & Junhu Ruan & Junyong Ruan, 2021. "Willingness and Influencing Factors of Pig Farmers to Adopt Internet of Things Technology in Food Traceability," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    7. Regina Birner & Thomas Daum & Carl Pray, 2021. "Who drives the digital revolution in agriculture? A review of supply‐side trends, players and challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1260-1285, December.
    8. Ingram, Julie & Maye, Damian & Bailye, Clive & Barnes, Andrew & Bear, Christopher & Bell, Matthew & Cutress, David & Davies, Lynfa & de Boon, Auvikki & Dinnie, Liz & Gairdner, Julian & Hafferty, Caitl, 2022. "What are the priority research questions for digital agriculture?," Land Use Policy, Elsevier, vol. 114(C).
    9. Chin-Ling Lee & Robert Strong & Kim E. Dooley, 2021. "Analyzing Precision Agriculture Adoption across the Globe: A Systematic Review of Scholarship from 1999–2020," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    10. Wachenheim, Cheryl & Fan, Linfeng & Zheng, Shi, 2021. "Adoption of unmanned aerial vehicles for pesticide application: Role of social network, resource endowment, and perceptions," Technology in Society, Elsevier, vol. 64(C).
    11. George W. Norton & Jeffrey Alwang, 2020. "Changes in Agricultural Extension and Implications for Farmer Adoption of New Practices," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(1), pages 8-20, March.
    12. Dimara, Efthalia & Skuras, Dimitris, 2003. "Adoption of agricultural innovations as a two-stage partial observability process," Agricultural Economics, Blackwell, vol. 28(3), pages 187-196, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    2. Sukoluhle Mazwane & Moraka N. Makhura & Mmapatla P. Senyolo, 2022. "Important Policy Parameters for the Development of Inclusive Digital Agriculture: Implications for the Redistributive Land Reform Program in South Africa," Agriculture, MDPI, vol. 12(12), pages 1-15, December.
    3. Schnebelin, Éléonore, 2022. "Linking the diversity of ecologisation models to farmers' digital use profiles," Ecological Economics, Elsevier, vol. 196(C).
    4. Basharat Ali & Peter Dahlhaus, 2022. "The Role of FAIR Data towards Sustainable Agricultural Performance: A Systematic Literature Review," Agriculture, MDPI, vol. 12(2), pages 1-17, February.
    5. Jin, Laiqun & Dai, Jiaying & Jiang, Weijie & Cao, Kairui, 2023. "Digital finance and misallocation of resources among firms: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
    6. Cuffey, Joel & Li, Wenying & Sawadgo, Wendiam & Rabinowitz, Adam, 2022. "Cross-Hedging in the Classroom: Engaging Students in Developing Scholarly Extension Output," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 4(2), July.
    7. Jiannan Wang & Shaoning Zhang & Lezhu Zhang, 2023. "Intelligent Hog Farming Adoption Choices Using the Unified Theory of Acceptance and Use of Technology Model: Perspectives from China’s New Agricultural Managers," Agriculture, MDPI, vol. 13(11), pages 1-22, October.
    8. McGrath, Karen & Brown, Claire & Regan, Áine & Russell, Tomás, 2023. "Investigating narratives and trends in digital agriculture: A scoping study of social and behavioural science studies," Agricultural Systems, Elsevier, vol. 207(C).
    9. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    10. Wollni, Meike & Andersson, Camilla, 2014. "Spatial patterns of organic agriculture adoption: Evidence from Honduras," Ecological Economics, Elsevier, vol. 97(C), pages 120-128.
    11. Basharat Ali & Peter Dahlhaus, 2022. "Roles of Selective Agriculture Practices in Sustainable Agricultural Performance: A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    12. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," IWMI Books, Reports H040602, International Water Management Institute.
    13. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    14. Wei Yu & Huiqin Huang & Xinyan Kong & Keying Zhu, 2023. "Can Digital Inclusive Finance Improve the Financial Performance of SMEs?," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    15. Aliou Diagne, 2012. "Adoption: a new Stata routine for estimating consistently population technological adoption parameters," SAN12 Stata Conference 17, Stata Users Group.
    16. Linda Steinhübel & Johannes Wegmann & Oliver Mußhoff, 2020. "Digging deep and running dry—the adoption of borewell technology in the face of climate change and urbanization," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 685-706, September.
    17. Sabino, Hullysses & Almeida, Rodrigo V.S. & Moraes, Lucas Baptista de & Silva, Walber Paschoal da & Guerra, Raphael & Malcher, Carlos & Passos, Diego & Passos, Fernanda G.O., 2022. "A systematic literature review on the main factors for public acceptance of drones," Technology in Society, Elsevier, vol. 71(C).
    18. Gregory Amacher & Jeffrey Alwang, 2004. "Productivity and Land Enhancing Technologies in Northern Ethiopia: Health, Public Investments, and Sequential Adoption," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 321-331.
    19. Gabriel Medina & Cassio Pereira & Joice Ferreira & Erika Berenguer & Jos Barlow, 2022. "Searching for Novel Sustainability Initiatives in Amazonia," Sustainability, MDPI, vol. 14(16), pages 1-13, August.
    20. Li, Bowei & Shen, Yueqin, 2021. "Effects of land transfer quality on the application of organic fertilizer by large-scale farmers in China," Land Use Policy, Elsevier, vol. 100(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14824-:d:1258741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.