IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13840-d1241918.html
   My bibliography  Save this article

Enhancing Sustainable Transportation: AI-Driven Bike Demand Forecasting in Smart Cities

Author

Listed:
  • Malliga Subramanian

    (Department of Computer Science and Engineering, Kongu Engineering College, Erode 638060, India)

  • Jaehyuk Cho

    (Department of Software Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea)

  • Sathishkumar Veerappampalayam Easwaramoorthy

    (Department of Software Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea)

  • Akash Murugesan

    (Department of Computer Science and Engineering, Kongu Engineering College, Erode 638060, India)

  • Ramya Chinnasamy

    (Department of Computer Science and Engineering, Kongu Engineering College, Erode 638060, India)

Abstract

Due to global ecological restrictions, cities, particularly urban transportation, must choose ecological solutions. Sustainable bike-sharing systems (BSS) have become an important element in the worldwide transportation infrastructure as an alternative to fossil-fuel-powered cars in metropolitan areas. Nevertheless, the placement of docks, which are the parking areas for bikes, depends on accessibility to bike paths, population density, difficulty in bike mobility, commuting cost, the spread of docks, and route imbalance. The purpose of this study is to compare the performance of various time series and machine learning algorithms for predicting bike demand using a two-year historical log from the Capital Bikeshare system in Washington, DC, USA. Specifically, the algorithms tested are LSTM, GRU, RF, ARIMA, and SARIMA, and their performance is then measured using the MSE, MAE, and RMSE metrics. The study found GRU performed the best, with RF also producing reasonably accurate predictions. ARIMA and SARIMA models produced less accurate predictions, likely due to their assumptions of linearity and stationarity in the data. In summary, this research offers significant insights into the efficacy of diverse algorithms in forecasting bike demand, thereby contributing to future research in the field.

Suggested Citation

  • Malliga Subramanian & Jaehyuk Cho & Sathishkumar Veerappampalayam Easwaramoorthy & Akash Murugesan & Ramya Chinnasamy, 2023. "Enhancing Sustainable Transportation: AI-Driven Bike Demand Forecasting in Smart Cities," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13840-:d:1241918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    4. Todd Litman & David Burwell, 2006. "Issues in sustainable transportation," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 6(4), pages 331-347.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    4. Shafiqah Azman & Dharini Pathmanathan & Aerambamoorthy Thavaneswaran, 2022. "Forecasting the Volatility of Cryptocurrencies in the Presence of COVID-19 with the State Space Model and Kalman Filter," Mathematics, MDPI, vol. 10(17), pages 1-15, September.
    5. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    6. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
    7. Han Lin Shang, 2017. "Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 36(1), pages 55-84, February.
    8. Leonardo Di Gangi & M. Lapucci & F. Schoen & A. Sortino, 2019. "An efficient optimization approach for best subset selection in linear regression, with application to model selection and fitting in autoregressive time-series," Computational Optimization and Applications, Springer, vol. 74(3), pages 919-948, December.
    9. Ghufran Ahmad & Furqan Ahmed & Muhammad Suhail Rizwan & Javed Muhammad & Syeda Hira Fatima & Aamer Ikram & Hajo Zeeb, 2021. "Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    10. Lange, Steffen & Pütz, Peter & Kopp, Thomas, 2018. "Do Mature Economies Grow Exponentially?," Ecological Economics, Elsevier, vol. 147(C), pages 123-133.
    11. Rice, William L. & Park, So Young & Pan, Bing & Newman, Peter, 2019. "Forecasting campground demand in US national parks," Annals of Tourism Research, Elsevier, vol. 75(C), pages 424-438.
    12. Saša Obradoviæ & Lela Ristiæ & Nemanja Lojanica, 2018. "Are unemployment rates stationary for SEE10 countries? Evidence from linear and nonlinear dynamics," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 36(2), pages 559-583.
    13. Schipfer, Fabian & Kranzl, Lukas & Olsson, Olle & Lamers, Patrick, 2020. "The European wood pellets for heating market - Price developments, trade and market efficiency," Energy, Elsevier, vol. 212(C).
    14. Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
    15. Bernadett Aradi & G'abor Petneh'azi & J'ozsef G'all, 2020. "Volatility Forecasting with 1-dimensional CNNs via transfer learning," Papers 2009.05508, arXiv.org.
    16. Gaetano Perone, 2022. "Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries," Econometrics, MDPI, vol. 10(2), pages 1-23, April.
    17. Barnes, Stuart J., 2021. "Stuck in the past or living in the present? Temporal focus and the spread of COVID-19," Social Science & Medicine, Elsevier, vol. 280(C).
    18. Fröhlich Markus, 2018. "Nowcasting Austrian Short Term Statistics," Journal of Official Statistics, Sciendo, vol. 34(2), pages 503-522, June.
    19. Robert I. Harris & William A. Pizer, 2020. "Using Taxes to Meet an Emission Target," NBER Working Papers 27781, National Bureau of Economic Research, Inc.
    20. Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13840-:d:1241918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.