IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8539-d605299.html
   My bibliography  Save this article

Technical Efficiency of Traditional Village Chicken Production in Africa: Entry Points for Sustainable Transformation and Improved Livelihood

Author

Listed:
  • Mulugeta Y. Birhanu

    (International Livestock Research Institute (ILRI), Addis Ababa P.O. Box 5689, Ethiopia)

  • Tesfahun Alemayehu

    (Environmental Economics and Natural Resources Group, Wageningen University and Research, 6706 Wageningen, The Netherlands)

  • Jasmine E. Bruno

    (Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA)

  • Fasil Getachew Kebede

    (Department of Animal Breeding and Genomics, Wageningen University & Research, 6708 Wageningen, The Netherlands)

  • Emmanuel Babafunso Sonaiya

    (Department of Animal Sciences, Obafemi Awolowo University, Ile-Ife 220282, Nigeria)

  • Ezekiel H. Goromela

    (Tanzania Livestock Research Institute (TALIRI)-Naliendele, Mtwara P.O. Box 1425, Tanzania)

  • Oladeji Bamidele

    (International Livestock Research Institute (ILRI), Addis Ababa P.O. Box 5689, Ethiopia)

  • Tadelle Dessie

    (International Livestock Research Institute (ILRI), Addis Ababa P.O. Box 5689, Ethiopia)

Abstract

Increasing poultry product consumption trends have attracted researchers and development practitioners to look for interventions that transform the low-input low-output-based village chicken production to a high yielding production system. However, due to the intricate nature of the production system, there is a dearth of evidence that helps design comprehensive interventions at the smallholder level. Using national-level representative data collected from 3555 village chicken producers in Ethiopia, Nigeria, and Tanzania, this study examines the technical efficiency of village chicken production and investigates the main factors that explain the level of inefficiency. We applied a stochastic frontier analysis to simultaneously quantify the level of technical efficiency and identify factors associated with heterogeneity in inefficiency. We found that the level of technical efficiency is extremely low in the three countries, suggesting enormous opportunities to enhance productivity using available resources. The heterogeneity in technical efficiency is strongly associated with producers’ experience in breed improvements and flock management, limited technical knowledge and skills, limited access to institutions and markets, smaller flock size, gender disparities, and household livelihood orientation. We argue the need to adopt an integrated approach to enhance village producers’ productivity and transform the traditional subsistence-based production system into a commercially oriented semi-intensive production system.

Suggested Citation

  • Mulugeta Y. Birhanu & Tesfahun Alemayehu & Jasmine E. Bruno & Fasil Getachew Kebede & Emmanuel Babafunso Sonaiya & Ezekiel H. Goromela & Oladeji Bamidele & Tadelle Dessie, 2021. "Technical Efficiency of Traditional Village Chicken Production in Africa: Entry Points for Sustainable Transformation and Improved Livelihood," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8539-:d:605299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8539/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean-Paul Chavas & Ragan Petrie & Michael Roth, 2005. "Farm Household Production Efficiency: Evidence from The Gambia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 160-179.
    2. Barbier, Edward B., 2020. "Is green rural transformation possible in developing countries?," World Development, Elsevier, vol. 131(C).
    3. Nelson Mango & Clifton Makate & Benjamin Hanyani-Mlambo & Shephard Siziba & Mark Lundy & Caroline Elliott, 2015. "A stochastic frontier analysis of technical efficiency in smallholder maize production in Zimbabwe: The post-fast-track land reform outlook," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1117189-111, December.
    4. George E. Battese & Sohail J. Malik & Manzoor A. Gill, 1996. "An Investigation Of Technical Inefficiencies Of Production Of Wheat Farmers In Four Districts Of Pakistan," Journal of Agricultural Economics, Wiley Blackwell, vol. 47(1‐4), pages 37-49, January.
    5. Townsend, R. F. & Kirsten, J. & Vink, N., 1998. "Farm size, productivity and returns to scale in agriculture revisited: a case study of wine producers in South Africa," Agricultural Economics, Blackwell, vol. 19(1-2), pages 175-180, September.
    6. Alvarez, Antonio & Arias, Carlos, 2004. "Technical efficiency and farm size: a conditional analysis," Agricultural Economics, Blackwell, vol. 30(3), pages 241-250, May.
    7. Alejandro Nin-Pratt, 2016. "Inputs, Productivity and Agricultural Growth in Sub-Saharan Africa," Springer Proceedings in Business and Economics, in: William H. Greene & Lynda Khalaf & Robin Sickles & Michael Veall & Marcel-Cristian Voia (ed.), Productivity and Efficiency Analysis, edition 1, chapter 0, pages 175-201, Springer.
    8. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    9. Ezra D. Berkhout & Robert A. Schipper & Arie Kuyvenhoven & Ousmane Coulibaly, 2010. "Does heterogeneity in goals and preferences affect efficiency? A case study of farm households in northern Nigeria," Agricultural Economics, International Association of Agricultural Economists, vol. 41(3‐4), pages 265-273, May.
    10. Adom, Philip Kofi & Adams, Samuel, 2020. "Decomposition of technical efficiency in agricultural production in Africa into transient and persistent technical efficiency under heterogeneous technologies," World Development, Elsevier, vol. 129(C).
    11. Roberto Furesi & Fabio Madau & Pietro Pulina, 2013. "Technical efficiency in the sheep dairy industry: an application on the Sardinian (Italy) sector," Demography, Springer;Population Association of America (PAA), vol. 1(1), pages 1-11, December.
    12. Greg Seymour, 2017. "Women's empowerment in agriculture: Implications for technical efficiency in rural Bangladesh," Agricultural Economics, International Association of Agricultural Economists, vol. 48(4), pages 513-522, July.
    13. Alexandros M. Theodoridis & Md. Mazharul Anwar, 2011. "A comparison of DEA and SFA methods: a case study of farm households in Bangladesh," Journal of Developing Areas, Tennessee State University, College of Business, vol. 45(1), pages 95-110, July-Dece.
    14. Johnson, Nancy L. & Kovarik, Chiara & Meinzen-Dick, Ruth & Njuki, Jemimah & Quisumbing, Agnes, 2016. "Gender, Assets, and Agricultural Development: Lessons from Eight Projects," World Development, Elsevier, vol. 83(C), pages 295-311.
    15. Dirk Bezemer & Kelvin Balcombe & Junior Davis & Iain Fraser, 2005. "Livelihoods and farm efficiency in rural Georgia," Applied Economics, Taylor & Francis Journals, vol. 37(15), pages 1737-1745.
    16. William H. Greene & Lynda Khalaf & Robin Sickles & Michael Veall & Marcel-Cristian Voia (ed.), 2016. "Productivity and Efficiency Analysis," Springer Proceedings in Business and Economics, Springer, edition 1, number 978-3-319-23228-7, March.
    17. Musa Hasen Ahmed & Kumilachew Alamerie Melesse, 2018. "Impact of off-farm activities on technical efficiency: evidence from maize producers of eastern Ethiopia," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 6(1), pages 1-15, December.
    18. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107609464.
    19. Gebregziabher, Gebrehaweria & Namara, Regassa E. & Holden, Stein, 2012. "Technical Efficiency of Irrigated and Rain-Fed Smallholder Agriculture in Tigray, Ethiopia: A Comparative Stochastic Frontier Production Function Analysis," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 51(3), pages 1-24, August.
    20. Edward Martey & Alexander N. Wiredu & Prince M. Etwire & John K.M. Kuwornu, 2019. "The impact of credit on the technical efficiency of maize-producing households in Northern Ghana," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 79(3), pages 304-322, May.
    21. Lowe, Philip & Phillipson, Jeremy & Proctor, Amy & Gkartzios, Menelaos, 2019. "Expertise in rural development: A conceptual and empirical analysis," World Development, Elsevier, vol. 116(C), pages 28-37.
    22. Hänke, Hendrik & Barkmann, Jan, 2017. "Insurance Function of Livestock: Farmer’s Coping Capacity with Regional Droughts in South-Western Madagascar," World Development, Elsevier, vol. 96(C), pages 264-275.
    23. Antonio Alvarez & Carlos Arias, 2003. "Diseconomies of Size with Fixed Managerial Ability," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 134-142.
    24. Ogundari, Kolawole, 2014. "The Paradigm of Agricultural Efficiency and its Implication on Food Security in Africa: What Does Meta-analysis Reveal?," World Development, Elsevier, vol. 64(C), pages 690-702.
    25. Tim Coelli & Sergio Perelman, 2000. "Technical efficiency of European railways: a distance function approach," Applied Economics, Taylor & Francis Journals, vol. 32(15), pages 1967-1976.
    26. Marc F. Bellemare & Casey J. Wichman, 2020. "Elasticities and the Inverse Hyperbolic Sine Transformation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(1), pages 50-61, February.
    27. Sheahan, Megan & Barrett, Christopher B., 2017. "Ten striking facts about agricultural input use in Sub-Saharan Africa," Food Policy, Elsevier, vol. 67(C), pages 12-25.
    28. Alene, Arega D. & Zeller, Manfred, 2005. "Technology adoption and farmer efficiency in multiple crops production in eastern Ethiopia: A comparison of parametric and non-parametric distance functions," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 6(1).
    29. Veronique Theriault & Renata Serra, 2014. "Institutional Environment and Technical Efficiency: A Stochastic Frontier Analysis of Cotton Producers in West Africa," Journal of Agricultural Economics, Wiley Blackwell, vol. 65(2), pages 383-405, June.
    30. Jabbar, M. A. & Ehui, S. K. & Von Kaufmann, R., 2002. "Supply and Demand for Livestock Credit in Sub-Saharan Africa: Lessons for Designing New Credit Schemes," World Development, Elsevier, vol. 30(6), pages 1029-1042, June.
    31. Halkos, George Emmanuel & Tzeremes, Nickolaos G., 2007. "Productivity efficiency and firm size: An empirical analysis of foreign owned companies," International Business Review, Elsevier, vol. 16(6), pages 713-731, December.
    32. David Hadley, 2006. "Patterns in Technical Efficiency and Technical Change at the Farm‐level in England and Wales, 1982–2002," Journal of Agricultural Economics, Wiley Blackwell, vol. 57(1), pages 81-100, March.
    33. J. Taylor & Irma Adelman, 2003. "Agricultural Household Models: Genesis, Evolution, and Extensions," Review of Economics of the Household, Springer, vol. 1(1), pages 33-58, January.
    34. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    35. Alene, Arega D. & Manyong, Victor M. & Gockowski, James, 2006. "The production efficiency of intercropping annual and perennial crops in southern Ethiopia: A comparison of distance functions and production frontiers," Agricultural Systems, Elsevier, vol. 91(1-2), pages 51-70, November.
    36. Peter Hazell, 2007. "Transformations in Agriculture and their Implications for Rural Development," The Electronic Journal of Agricultural and Development Economics, Food and Agriculture Organization of the United Nations, vol. 4(1), pages 47-65.
    37. Songqing Jin & Hengyun Ma & Jikun Huang & Ruifa Hu & Scott Rozelle, 2010. "Productivity, efficiency and technical change: measuring the performance of China’s transforming agriculture," Journal of Productivity Analysis, Springer, vol. 33(3), pages 191-207, June.
    38. Aikaterini Kokkinou, 2010. "A Note on Theory of Productive Efficiency and Stochastic Frontier Models," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 109-118.
    39. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    40. George E. Battese, 1997. "A Note On The Estimation Of Cobb‐Douglas Production Functions When Some Explanatory Variables Have Zero Values," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 250-252, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerile Qimuge & Wulan Tuya & Si Qinchaoketu & Bu He, 2023. "Construction and Practice of Livelihood Efficiency Index System for Herders in Typical Steppe Area of Inner Mongolia Based on Super-Efficiency Slacks-Based Measure Model," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    2. Nisar Ahmed Khan & Majid Ali & Nihal Ahmad & Muhammad Ali Abid & Sigrid Kusch-Brandt, 2022. "Technical Efficiency Analysis of Layer and Broiler Poultry Farmers in Pakistan," Agriculture, MDPI, vol. 12(10), pages 1-21, October.
    3. Huma Neupane & Krishna P. Paudel & Mandeep Adhikari & Qinying He, 2022. "Impact of cooperative membership on production efficiency of smallholder goat farmers in Nepal," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 93(2), pages 337-356, June.
    4. Oladeji Bamidele & Tunde Adegoke Amole, 2021. "Impact of COVID-19 on Smallholder Poultry Farmers in Nigeria," Sustainability, MDPI, vol. 13(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narangerel Ganbold & Shah Fahad & Hua Li & Tumendemberel Gungaa, 2022. "An evaluation of subsidy policy impacts, transient and persistent technical efficiency: A case of Mongolia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9223-9242, July.
    2. Olli-Pekka Kuusela & Maria S. Bowman & Gregory S. Amacher & Richard B. Howarth & Nadine T. Laporte, 2020. "Does infrastructure and resource access matter for technical efficiency? An empirical analysis of fishing and fuelwood collection in Mozambique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 1811-1837, March.
    3. Djuraeva, Mukhayyo & Bobojonov, Ihtiyor & Kuhn, Lena & Glauben, Thomas, 2023. "The impact of agricultural extension type and form on technical efficiency under transition: An empirical assessment of wheat production in Uzbekistan," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 203-221.
    4. Hong, Yu & Heerink, Nico & Zhao, Minjuan & van der Werf, Wopke, 2019. "Intercropping contributes to a higher technical efficiency in smallholder farming: Evidence from a case study in Gaotai County, China," Agricultural Systems, Elsevier, vol. 173(C), pages 317-324.
    5. Dimitris Christopoulos & Margarita Genius & Vangelis Tzouvelekas, 2021. "Farm and non-farm labor decisions and household efficiency," Journal of Productivity Analysis, Springer, vol. 56(1), pages 15-31, August.
    6. Bravo-Ureta, Boris E. & Higgins, Daniel & Arslan, Aslihan, 2020. "Irrigation infrastructure and farm productivity in the Philippines: A stochastic Meta-Frontier analysis," World Development, Elsevier, vol. 135(C).
    7. Sebastian Lakner & Thelma Brenes‐Muñoz & Bernhard Brümmer, 2017. "Technical Efficiency in Chilean Agribusiness Industry: A Metafrontier Approach," Agribusiness, John Wiley & Sons, Ltd., vol. 33(3), pages 302-323, June.
    8. Radha R. Ashrit, 2023. "Estimation of technical efficiency of Indian farms for major crops during 2013–2014 and 2017–2018: a stochastic Frontier production approach," SN Business & Economics, Springer, vol. 3(2), pages 1-32, February.
    9. Imori, Denise & Guilhoto, Joaquim José Martins & Postali, Fernando Antonio Slaibe, 2012. "Eficiência técnica das agropecuárias familiar e patronal – diferenças regionais no Brasil [Technical efficiency of agricultural households and business - regional differences in Brazil]," MPRA Paper 46954, University Library of Munich, Germany.
    10. Antonio Alvarez & Carlos Arias, 2014. "A selection of relevant issues in applied stochastic frontier analysis," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 3-11.
    11. Nguyen, Hoa-Thi-Minh & Do, Huong & Kompas, Tom, 2021. "Economic efficiency versus social equity: The productivity challenge for rice production in a ‘greying’ rural Vietnam," World Development, Elsevier, vol. 148(C).
    12. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    13. Jin Yang & Hui Wang & Songqing Jin & Kevin Chen & Jeffrey Riedinger & Chao Peng, 2016. "Migration, local off-farm employment, and agricultural production efficiency: evidence from China," Journal of Productivity Analysis, Springer, vol. 45(3), pages 247-259, June.
    14. Galluzzo Nicola, 2020. "A Technical Efficiency Analysis of Financial Subsidies Allocated by the Cap in Romanian Farms Using Stochastic Frontier Analysis," European Countryside, Sciendo, vol. 12(4), pages 494-505, December.
    15. Solis, Daniel & Bravo-Ureta, Boris E. & Quiroga, Ricardo E., 2006. "The Effect Of Soil Conservation On Technical Efficiency: Evidence From Central America," 2006 Annual meeting, July 23-26, Long Beach, CA 21345, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Larson, Donald F. & Plessmann, Frank, 2009. "Do farmers choose to be inefficient? Evidence from Bicol," Journal of Development Economics, Elsevier, vol. 90(1), pages 24-32, September.
    17. Huang, Wei & Bruemmer, Bernhard & Huntsinger, Lynn, 2016. "Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China," Ecological Economics, Elsevier, vol. 122(C), pages 1-11.
    18. Zangin Zeebari & Kristofer Månsson & Pär Sjölander & Magnus Söderberg, 2023. "Regularized conditional estimators of unit inefficiency in stochastic frontier analysis, with application to electricity distribution market," Journal of Productivity Analysis, Springer, vol. 59(1), pages 79-97, February.
    19. Chang, Hung-Hao & Boisvert, Richard N., 2009. "The Conservation Reserve Program, Off-Farm Work, and Farm Household Technical Efficiencies," Working Papers 57034, Cornell University, Department of Applied Economics and Management.
    20. Pede, Valerien O. & McKinley, Justin & Singbo, Alphonse & Kajisa, Kei, 2015. "Spatial Dependency of Technical Efficiency in Rice Farming: The Case of Bohol, Philippines," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205456, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8539-:d:605299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.