IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7317-d409876.html
   My bibliography  Save this article

The Correlation Analysis of Futures Pricing Mechanism in China’s Carbon Financial Market

Author

Listed:
  • Chunguang Sheng

    (College of Economics and Management, Northeast Forestry University, Harbin 150040, China)

  • Guangyu Wang

    (Faculty of Forestry, the University of British Columbia, Vancouver, BC V6T 1Z4, Canada)

  • Yude Geng

    (College of Economics and Management, Northeast Forestry University, Harbin 150040, China)

  • Lirong Chen

    (College of Economics and Management, Northeast Forestry University, Harbin 150040, China)

Abstract

China, taking the concept of sustainable development as the premise, puts forward Intended Nationally Determined Contributions (INDC) to reduce the greenhouse gas emissions in response to climate change. In this context, with the purpose of seeking solutions to a carbon financial market pricing mechanism to build China’s carbon finance market actively and thus achieving the goal of sustainable development, this paper, based on the autoregressive integrated moving average (ARIMA) model, established a carbon price prediction model for the carbon financial market, and studied the relationship between Certified Emission Reduction (CER) futures prices and spot prices, as well as the relationship between European Union allowances (EUA) futures prices and CER futures prices in an empirical manner. In this paper, EUA and CER futures prices of the European Climate Exchange (ECX) and EUA and CER spot prices of the BlueNext Environmental Exchange were selected as research objects. Granger causality test, co-integration test, and ECM were used to form a progressive econometric analysis framework. The results show that firstly, the ARIMA model can effectively predict carbon futures prices; secondly, CER futures prices cannot guide spot price, and the futures pricing function does not play a role in this market; thirdly, EUA futures price can, in the short term, effectively guide the trend of CER futures prices, with the futures pricing function between the two markets. In the long run, however, the future pricing function of the two markets is not obvious. Therefore, great differences among maturity of the two markets, degree of policy influence, and market share lead to the failure of long-run futures pricing functions.

Suggested Citation

  • Chunguang Sheng & Guangyu Wang & Yude Geng & Lirong Chen, 2020. "The Correlation Analysis of Futures Pricing Mechanism in China’s Carbon Financial Market," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7317-:d:409876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miyamoto, Mai & Takeuchi, Kenji, 2019. "Climate agreement and technology diffusion: Impact of the Kyoto Protocol on international patent applications for renewable energy technologies," Energy Policy, Elsevier, vol. 129(C), pages 1331-1338.
    2. Chevallier, Julien, 2011. "Macroeconomics, finance, commodities: Interactions with carbon markets in a data-rich model," Economic Modelling, Elsevier, vol. 28(1-2), pages 557-567, January.
    3. Bing Feng & Kaiyang Sun & Min Chen & Tao Gao, 2020. "The Impact of Core Technological Capabilities of High-Tech Industry on Sustainable Competitive Advantage," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
    4. Finon, Dominique, 2019. "Carbon policy in developing countries: Giving priority to non-price instruments," Energy Policy, Elsevier, vol. 132(C), pages 38-43.
    5. Stefan, Martin & Wellenreuther, Claudia, 2020. "London vs. Leipzig: Price discovery of carbon futures during Phase III of the ETS," Economics Letters, Elsevier, vol. 188(C).
    6. Mansanet-Bataller, Maria & Chevallier, Julien & Hervé-Mignucci, Morgan & Alberola, Emilie, 2011. "EUA and sCER phase II price drivers: Unveiling the reasons for the existence of the EUA-sCER spread," Energy Policy, Elsevier, vol. 39(3), pages 1056-1069, March.
    7. Munir, Qaiser & Lean, Hooi Hooi & Smyth, Russell, 2020. "CO2 emissions, energy consumption and economic growth in the ASEAN-5 countries: A cross-sectional dependence approach," Energy Economics, Elsevier, vol. 85(C).
    8. Xin Yan & Min Chen & Mu-Yen Chen, 2019. "Coupling and Coordination Development of Australian Energy, Economy, and Ecological Environment Systems from 2007 to 2016," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    9. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    10. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    11. Erfu Dai & Le Yin & Yahui Wang & Liang Ma & Miao Tong, 2020. "Quantitative Assessment of the Relative Impacts of Land Use and Climate Change on the Key Ecosystem Services in the Hengduan Mountain Region, China," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    12. Kang, Sang Hoon & Islam, Faridul & Kumar Tiwari, Aviral, 2019. "The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 90-101.
    13. Brown, David P. & Eckert, Andrew & Eckert, Heather, 2018. "Carbon pricing with an output subsidy under imperfect competition: The case of Alberta's restructured electricity market," Resource and Energy Economics, Elsevier, vol. 52(C), pages 102-123.
    14. repec:dau:papers:123456789/5111 is not listed on IDEAS
    15. Alexandre Kossoy & Pierre Guigon, "undated". "State and Trends of the Carbon Market 2012," World Bank Publications - Reports 13336, The World Bank Group.
    16. Gärling, Tommy & Gamble, Amelie, 2008. "Perceived inflation and expected future prices in different currencies," Journal of Economic Psychology, Elsevier, vol. 29(4), pages 401-416, August.
    17. Cervelló-Royo, R. & Moya-Clemente, I. & Perelló-Marín, M.R. & Ribes-Giner, G., 2020. "Sustainable development, economic and financial factors, that influence the opportunity-driven entrepreneurship. An fsQCA approach," Journal of Business Research, Elsevier, vol. 115(C), pages 393-402.
    18. Lee, Changju & Ku, Seungmo & Cho, Poongjin & Chang, Woojin, 2019. "Explaining future market return and evaluating market condition with common preferred spread index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 921-934.
    19. Kuriyama, Akihisa & Abe, Naoya, 2018. "Ex-post assessment of the Kyoto Protocol – quantification of CO2 mitigation impact in both Annex B and non-Annex B countries-," Applied Energy, Elsevier, vol. 220(C), pages 286-295.
    20. Lau, Lee Chung & Lee, Keat Teong & Mohamed, Abdul Rahman, 2012. "Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—A comment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5280-5284.
    21. Xinyue Yang & Ye Song & Mingjun Sun & Hongjun Peng, 2020. "Strategies for Capital Constrained Timber and Carbon Sink Supply Chain under the Cap-and-Trade Scheme," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    22. Fragkos, Panagiotis & Tasios, Nikos & Paroussos, Leonidas & Capros, Pantelis & Tsani, Stella, 2017. "Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050," Energy Policy, Elsevier, vol. 100(C), pages 216-226.
    23. repec:dau:papers:123456789/5109 is not listed on IDEAS
    24. Kapoor, Nimisha & Ghosh, Sajal, 2014. "Long-term association between European and Indian markets on carbon credit price," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 656-662.
    25. repec:wbk:wboper:13335 is not listed on IDEAS
    26. Bo Peng & Xiaoying Tong & Shijiang Cao & Wenying Li & Gui Xu, 2020. "Carbon Emission Calculation Method and Low-Carbon Technology for Use in Expressway Construction," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Guohui & Ning, Zhiyuan & Yang, Hong & Gao, Lipeng, 2022. "A new carbon price prediction model," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syeda Azra Batool & Humara Ahmad & Syed Muhammad Ahmad Hassan Gillani & Hamad Raza & Muhammad Siddique & Nohman Khan & Muhammad Imran Qureshi, 2021. "Investigating the Causal Linkage among Economic Growth, Energy Consumption, Urbanization and Environmental Quality in ASEAN-5 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 319-327.
    2. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    3. Cary, Michael, 2023. "Climate policy boosts trade competitiveness: Evidence from timber trade networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    5. Jongmin Yu & Mindy L. Mallory, 2020. "Carbon price interaction between allocated permits and generated offsets," Operational Research, Springer, vol. 20(2), pages 671-700, June.
    6. Atif Khan Jadoon & Sania Akhtar & Ambreen Sarwar & Syeda Azra Batool & Sarvjeet Kaur Chatrath & Saima Liaqat, 2021. "Is Economic Growth And Industrial Growth The Reason For Environmental Degradation In Saarc Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 418-426.
    7. Bulut, Umit & Muratoglu, Gonul, 2018. "Renewable energy in Turkey: Great potential, low but increasing utilization, and an empirical analysis on renewable energy-growth nexus," Energy Policy, Elsevier, vol. 123(C), pages 240-250.
    8. Abdul Rehman & Magdalena Radulescu & Laura Mariana Cismas & Rafael Alvarado & Carmen Gabriela Secara & Claudia Tolea, 2022. "Urbanization, Economic Development, and Environmental Degradation: Investigating the Role of Renewable Energy Use," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    9. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Assessing energy poverty and its effect on CO2 emissions: The case of China," Energy Economics, Elsevier, vol. 97(C).
    10. Chevallier, Julien, 2013. "Variance risk-premia in CO2 markets," Economic Modelling, Elsevier, vol. 31(C), pages 598-605.
    11. Jaruwan Chontanawat, 2020. "Dynamic Modelling of Causal Relationship between Energy Consumption, CO 2 Emission, and Economic Growth in SE Asian Countries," Energies, MDPI, vol. 13(24), pages 1-27, December.
    12. Zhu, Bangzhu & Ye, Shunxin & Han, Dong & Wang, Ping & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "A multiscale analysis for carbon price drivers," Energy Economics, Elsevier, vol. 78(C), pages 202-216.
    13. Julien Chevallier, 2013. "Carbon trading: past, present and future," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 21, pages 471-489, Edward Elgar Publishing.
    14. Armeanu, Daniel Stefan & Joldes, Camelia Catalina & Gherghina, Stefan Cristian & Andrei, Jean Vasile, 2021. "Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ g," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    15. Lan, Hai & Zheng, Puyang & Li, Zheng, 2021. "Constructing urban sprawl measurement system of the Yangtze River economic belt zone for healthier lives and social changes in sustainable cities," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    16. Tatyana Iglina & Pavel Iglin & Dmitry Pashchenko, 2022. "Industrial CO 2 Capture by Algae: A Review and Recent Advances," Sustainability, MDPI, vol. 14(7), pages 1-26, March.
    17. Federico Galán-Valdivieso & Elena Villar-Rubio & María-Dolores Huete-Morales, 2018. "The erratic behaviour of the EU ETS on the path towards consolidation and price stability," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(5), pages 689-706, October.
    18. Li Wang & Jinyang Tang & Mengqian Tang & Mengying Su & Lili Guo, 2022. "Scale of Operation, Financial Support, and Agricultural Green Total Factor Productivity: Evidence from China," IJERPH, MDPI, vol. 19(15), pages 1-18, July.
    19. Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
    20. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7317-:d:409876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.