IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5813-d386801.html
   My bibliography  Save this article

Prospects for Electric Vehicles

Author

Listed:
  • Jack N. Barkenbus

    (Vanderbilt Institute for Energy & Environment, Vanderbilt University, Nashville, TN 37240, USA)

Abstract

The transformation from conventional vehicles to electric vehicles is underway, but its timeline is still uncertain. The battle against climate change provides the essential backdrop, leading governments to encourage this transformation by providing both consumer incentives to purchase electric vehicles and by establishing regulations requiring automakers to produce them. Behind this prodding are a set of fundamental forces that both encourage and discourage consumer interest, as set forth in the text. Fortunately, intensive battery research and development is proceeding that should alter market forces and make electric vehicles more attractive to segments of the population not now in the market for an electric vehicle. Hence, even if the timeline for battery improvement cannot be predicted with certainty, continued government support, and upstart automakers, such as Tesla, should ensure that the transformation will proceed over time.

Suggested Citation

  • Jack N. Barkenbus, 2020. "Prospects for Electric Vehicles," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5813-:d:386801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Sperling, Dan & Collantes, Gustavo O, 2008. "The origin of California’s zero emission vehicle mandate," Institute of Transportation Studies, Working Paper Series qt9pd8m8gs, Institute of Transportation Studies, UC Davis.
    3. Jonatan J. Gómez Vilchez & Austin Smyth & Luke Kelleher & Hui Lu & Charlene Rohr & Gillian Harrison & Christian Thiel, 2019. "Electric Car Purchase Price as a Factor Determining Consumers’ Choice and their Views on Incentives in Europe," Sustainability, MDPI, vol. 11(22), pages 1-14, November.
    4. Florian Knobloch & Steef V. Hanssen & Aileen Lam & Hector Pollitt & Pablo Salas & Unnada Chewpreecha & Mark A. J. Huijbregts & Jean-Francois Mercure, 2020. "Net emission reductions from electric cars and heat pumps in 59 world regions over time," Nature Sustainability, Nature, vol. 3(6), pages 437-447, June.
    5. Collantes, Gustavo & Sperling, Daniel, 2008. "The origin of California's zero emission vehicle mandate," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1302-1313, December.
    6. Jim Motavalli, 2015. "Technology: A solid future," Nature, Nature, vol. 526(7575), pages 96-97, October.
    7. Gerardo Zarazua de Rubens & Lance Noel & Benjamin K. Sovacool, 2018. "Dismissive and deceptive car dealerships create barriers to electric vehicle adoption at the point of sale," Nature Energy, Nature, vol. 3(6), pages 501-507, June.
    8. Meckling, Jonas & Nahm, Jonas, 2019. "The politics of technology bans: Industrial policy competition and green goals for the auto industry," Energy Policy, Elsevier, vol. 126(C), pages 470-479.
    9. Guoqiang Zhang & Yanmei Xu & Juan Zhang, 2016. "Consumer-Oriented Policy towards Diffusion of Electric Vehicles: City-Level Evidence from China," Sustainability, MDPI, vol. 8(12), pages 1-16, December.
    10. Noel, Lance & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2018. "Beyond emissions and economics: Rethinking the co-benefits of electric vehicles (EVs) and vehicle-to-grid (V2G)," Transport Policy, Elsevier, vol. 71(C), pages 130-137.
    11. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moghadasi, Negin & Collier, Zachary A. & Koch, Andrew & Slutzky, David L. & Polmateer, Thomas L. & Manasco, Mark C. & Lambert, James H., 2022. "Trust and security of electric vehicle-to-grid systems and hardware supply chains," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Isabel C. Gil-García & Mª Socorro García-Cascales & Habib Dagher & Angel Molina-García, 2021. "Electric Vehicle and Renewable Energy Sources: Motor Fusion in the Energy Transition from a Multi-Indicator Perspective," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    3. Kouridis, Ch & Vlachokostas, Ch, 2022. "Towards decarbonizing road transport: Environmental and social benefit of vehicle fleet electrification in urban areas of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Zhang, Xizheng & Wang, Zeyu & Lu, Zhangyu, 2022. "Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 306(PA).
    5. Haider Ali Abbasi & Satirenjit Kaur Johl & Zullina Bt Hussain Shaari & Wajiha Moughal & Muhammad Mazhar & Muhammad Ali Musarat & Waqas Rafiq & Asaad Salam Farooqi & Alexey Borovkov, 2021. "Consumer Motivation by Using Unified Theory of Acceptance and Use of Technology towards Electric Vehicles," Sustainability, MDPI, vol. 13(21), pages 1-22, November.
    6. Angelidou, M. & Politis, C. & Panori, A. & Bakratsas, T. & Fellnhofer, K., 2022. "Emerging smart city, transport and energy trends in urban settings: Results of a pan-European foresight exercise with 120 experts," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    7. Jaeyoung Lee & Farrukh Baig & Mir Aftab Hussain Talpur & Sajan Shaikh, 2021. "Public Intentions to Purchase Electric Vehicles in Pakistan," Sustainability, MDPI, vol. 13(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kantapich Preedakorn & David Butler & Jörn Mehnen, 2023. "Challenges for the Adoption of Electric Vehicles in Thailand: Potential Impacts, Barriers, and Public Policy Recommendations," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    2. Trencher, Gregory & Taeihagh, Araz & Yarime, Masaru, 2020. "Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan," Energy Policy, Elsevier, vol. 142(C).
    3. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    4. J. H. Wesseling & E. M. M. I. Niesten & J. Faber & M. P. Hekkert, 2015. "Business Strategies of Incumbents in the Market for Electric Vehicles: Opportunities and Incentives for Sustainable Innovation," Business Strategy and the Environment, Wiley Blackwell, vol. 24(6), pages 518-531, September.
    5. Li, Xiaotao & Yuan, Xiaodong, 2022. "Tracing the technology transfer of battery electric vehicles in China: A patent citation organization network analysis," Energy, Elsevier, vol. 239(PD).
    6. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    7. Gu, Gaoxiang & Wang, Zheng, 2018. "China’s carbon emissions abatement under industrial restructuring by investment restriction," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 133-144.
    8. Collantes, Gustavo & Melaina, Marc W., 2011. "The co-evolution of alternative fuel infrastructure and vehicles: A study of the experience of Argentina with compressed natural gas," Energy Policy, Elsevier, vol. 39(2), pages 664-675, February.
    9. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    10. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    11. Collantes, Gustavo & Kessler, Jeff & Cahill, Eric, 2017. "Structural Determinants of Electric Vehicle Market Growth," Institute of Transportation Studies, Working Paper Series qt8d15487b, Institute of Transportation Studies, UC Davis.
    12. Dmitry V. Pelegov & Jean-Jacques Chanaron, 2022. "Electric Car Market Analysis Using Open Data: Sales, Volatility Assessment, and Forecasting," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    13. Asna Ashari, Parsa & Blind, Knut & Koch, Claudia, 2023. "Knowledge and technology transfer via publications, patents, standards: Exploring the hydrogen technological innovation system," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    14. Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "The market case for electric mobility: Investigating electric vehicle business models for mass adoption," Energy, Elsevier, vol. 194(C).
    15. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    16. Rhodes, Ekaterina & Scott, William A. & Jaccard, Mark, 2021. "Designing flexible regulations to mitigate climate change: A cross-country comparative policy analysis," Energy Policy, Elsevier, vol. 156(C).
    17. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
    18. Broadbent, Gail Helen & Allen, Cameron Ian & Wiedmann, Thomas & Metternicht, Graciela Isabel, 2022. "Accelerating electric vehicle uptake: Modelling public policy options on prices and infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 155-174.
    19. Rotaris, Lucia & Giansoldati, Marco & Scorrano, Mariangela, 2021. "The slow uptake of electric cars in Italy and Slovenia. Evidence from a stated-preference survey and the role of knowledge and environmental awareness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 1-18.
    20. Udit Chawla & Rajesh Mohnot & Varsha Mishra & Harsh Vikram Singh & Ayush Kumar Singh, 2023. "Factors Influencing Customer Preference and Adoption of Electric Vehicles in India: A Journey towards More Sustainable Transportation," Sustainability, MDPI, vol. 15(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5813-:d:386801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.