IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1787-d216873.html
   My bibliography  Save this article

Does Urbanization Improve Industrial Water Consumption Efficiency?

Author

Listed:
  • Bingquan Liu

    (School of Economics & Management, China University of Petroleum (East China), Qingdao 266580, China
    Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao 266580, China)

  • Yongqing Li

    (School of Economics & Management, China University of Petroleum (East China), Qingdao 266580, China)

  • Rui Hou

    (School of Economics & Management, China University of Petroleum (East China), Qingdao 266580, China)

  • Hui Wang

    (School of Economics & Management, China University of Petroleum (East China), Qingdao 266580, China
    Institute for Energy Economics and Policy, China University of Petroleum (East China), Qingdao 266580, China)

Abstract

Although some studies have focused on the logical connection between industrial water consumption in the industrial economic development (IED) and industrial wastewater treatment (IWT) stages, the master–slave game relationship between these stages has not been considered. This study selected panel data from 30 provinces in China from 2011 to 2015, divided these provinces into IED- and IWT-dominated regions, and developed a two-stage data envelopment analysis (DEA) model based on the master–slave game relationship between the IED and IWT stages. In addition, a regression model based on the Simar–Wilson approach was constructed to reveal the effects of urbanization on industrial water consumption efficiency. The results show that the industrial water consumption efficiency in China slightly fluctuated from 2011 to 2015, and there was no significant efficiency improvement. The efficiency of the IED stage was generally higher than that of the IWT stage, and the efficiency gap between stages was smaller in IED-dominated regions than in IWT-dominated regions. Urbanization has different effects on industrial water consumption efficiency, and the same factor can have significantly different effects in different regions. Some policy implications are proposed for the different types of regions.

Suggested Citation

  • Bingquan Liu & Yongqing Li & Rui Hou & Hui Wang, 2019. "Does Urbanization Improve Industrial Water Consumption Efficiency?," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1787-:d:216873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qunwei Wang & Peng Zhou & Zengyao Zhao & Neng Shen, 2014. "Energy Efficiency and Energy Saving Potential in China: A Directional Meta-Frontier DEA Approach," Sustainability, MDPI, vol. 6(8), pages 1-17, August.
    2. Jasper Grosskurth & Jan Rotmans, 2005. "The Scene Model: Getting A Grip On Sustainable Development In Policy Making," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 7(1), pages 135-151, January.
    3. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
    4. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2013. "Is there an environmental Kuznets curve for water use? A panel smooth transition regression approach," Economic Modelling, Elsevier, vol. 31(C), pages 518-527.
    5. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    6. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    7. Long, Kaisheng & Pijanowski, Bryan C., 2017. "Is there a relationship between water scarcity and water use efficiency in China? A national decadal assessment across spatial scales," Land Use Policy, Elsevier, vol. 69(C), pages 502-511.
    8. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    9. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    10. Zha, Yong & Liang, Liang, 2010. "Two-stage cooperation model with input freely distributed among the stages," European Journal of Operational Research, Elsevier, vol. 205(2), pages 332-338, September.
    11. Grimble, R. J., 1999. "Economic instruments for improving water use efficiency: theory and practice," Agricultural Water Management, Elsevier, vol. 40(1), pages 77-82, March.
    12. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    13. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    14. Chen, Zi-yue & Huang, Zhen-hai & Nie, Pu-yan, 2018. "Industrial characteristics and consumption efficiency from a nexus perspective – Based on Anhui’s Empirical Statistics," Energy Policy, Elsevier, vol. 115(C), pages 281-290.
    15. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jincai Zhao & Yiyao Wang & Xiufeng Zhang & Qianxi Liu, 2022. "Industrial and Agricultural Water Use Efficiency and Influencing Factors in the Process of Urbanization in the Middle and Lower Reaches of the Yellow River Basin, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    2. Xiaona Li & Xiaosheng Wang & Haiying Guo & Weimin Ma, 2020. "Multi-Water Resources Optimal Allocation Based on Multi-Objective Uncertain Chance-Constrained Programming Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4881-4899, December.
    3. Xuhui Ding & Zixuan Zhang & Fengping Wu & Xiangyi Xu, 2019. "Study on the Evolution of Water Resource Utilization Efficiency in Tibet Autonomous Region and Four Provinces in Tibetan Areas under Double Control Action," Sustainability, MDPI, vol. 11(12), pages 1-11, June.
    4. Qinghua Pang & Hailiang Huang & Lina Zhang, 2022. "Characteristics of Spatial–Temporal Variations in Coupling Coordination between Industrial Water Use and Industrial Green Development Systems in China," Sustainability, MDPI, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    2. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    3. Jie Wu & Panpan Xia & Qingyuan Zhu & Junfei Chu, 2019. "Measuring environmental efficiency of thermoelectric power plants: a common equilibrium efficient frontier DEA approach with fixed-sum undesirable output," Annals of Operations Research, Springer, vol. 275(2), pages 731-749, April.
    4. Gongbing Bi & Yan Luo & Jingjing Ding & Liang Liang, 2015. "Environmental performance analysis of Chinese industry from a slacks-based perspective," Annals of Operations Research, Springer, vol. 228(1), pages 65-80, May.
    5. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    6. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    7. César Salazar & Roberto Cárdenas-Retamal & Marcela Jaime, 2023. "Environmental efficiency in the salmon industry—an exploratory analysis around the 2007 ISA virus outbreak and subsequent regulations in Chile," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8107-8135, August.
    8. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
    9. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    10. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    11. Serra, Teresa & Chambers, Robert G. & Oude Lansink, Alfons, 2014. "Measuring technical and environmental efficiency in a state-contingent technology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 706-717.
    12. Bădin, Luiza & Daraio, Cinzia & Simar, Léopold, 2012. "How to measure the impact of environmental factors in a nonparametric production model," European Journal of Operational Research, Elsevier, vol. 223(3), pages 818-833.
    13. Walheer, Barnabé, 2018. "Economic growth and greenhouse gases in Europe: A non-radial multi-sector nonparametric production-frontier analysis," Energy Economics, Elsevier, vol. 74(C), pages 51-62.
    14. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
    15. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    16. Wang, Ke & Lu, Bin & Wei, Yi-Ming, 2013. "China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis," Applied Energy, Elsevier, vol. 112(C), pages 1403-1415.
    17. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    18. Kuang, Bing & Lu, Xinhai & Zhou, Min & Chen, Danling, 2020. "Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    19. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    20. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1787-:d:216873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.