IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3396-d241440.html
   My bibliography  Save this article

Study on the Evolution of Water Resource Utilization Efficiency in Tibet Autonomous Region and Four Provinces in Tibetan Areas under Double Control Action

Author

Listed:
  • Xuhui Ding

    (School of Business Administration, Hohai University, Changzhou 213022, China)

  • Zixuan Zhang

    (School of Business Administration, Hohai University, Changzhou 213022, China)

  • Fengping Wu

    (School of Business Administration, Hohai University, Changzhou 213022, China)

  • Xiangyi Xu

    (School of Business Administration, Hohai University, Changzhou 213022, China)

Abstract

Tibet is the province with the largest international rivers and water resource reserves in China. However, due to its special ecological environment, the utilization of water resources has become an inevitable problem. Considering the undesirable outputs in water resource utilization, the Super-efficiency Slack-based Measure (SE-SBM) model is used to measure water utilization efficiency of Tibet and the Tibetan areas (four provinces where Tibetan areas are located) from 2006 to 2016. The mixed and random panel Tobit model is used to investigate the driving factors of water efficiency and a horizontal comparison between provinces is made on this basis. The results show that the water utilization efficiency of Tibet and the Tibetan areas in four provinces shows a “U-shaped” trend. The water utilization efficiency of most provinces is greater than or close to 1 and the water utilization efficiency of each province shows a constant convergence trend. Environmental regulation and technological innovation have a significant positive effect on water utilization efficiency. Urbanization and foreign direct investment (FDI) have a significant negative effect on water utilization efficiency. Per capita Gross Domestic Product (GDP) and water resource endowment have no significant effect on water utilization efficiency. It is necessary to select a new type of urbanization suitable for the Tibetan Plateau, eliminate the backward production capacity, high water consumption, or high emissions industries, and to strengthen the research and development of water-saving and emission-reduction technology innovation in Tibet.

Suggested Citation

  • Xuhui Ding & Zixuan Zhang & Fengping Wu & Xiangyi Xu, 2019. "Study on the Evolution of Water Resource Utilization Efficiency in Tibet Autonomous Region and Four Provinces in Tibetan Areas under Double Control Action," Sustainability, MDPI, vol. 11(12), pages 1-11, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3396-:d:241440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janusz R. Rak & Katarzyna Pietrucha-Urbanik, 2019. "An Approach to Determine Risk Indices for Drinking Water–Study Investigation," Sustainability, MDPI, vol. 11(11), pages 1-12, June.
    2. Javorcik, Beata S. & Spatareanu, Mariana, 2011. "Does it matter where you come from? Vertical spillovers from foreign direct investment and the origin of investors," Journal of Development Economics, Elsevier, vol. 96(1), pages 126-138, September.
    3. Daniela Marconi, 2012. "Environmental Regulation and Revealed Comparative Advantages in Europe: Is China a Pollution Haven?," Review of International Economics, Wiley Blackwell, vol. 20(3), pages 616-635, August.
    4. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    5. YuSheng Kong & Rabnawaz Khan, 2019. "To examine environmental pollution by economic growth and their impact in an environmental Kuznets curve (EKC) among developed and developing countries," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    6. Bingquan Liu & Yongqing Li & Rui Hou & Hui Wang, 2019. "Does Urbanization Improve Industrial Water Consumption Efficiency?," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    7. Aminou Arouna & Stephan Dabbert, 2010. "Determinants of Domestic Water Use by Rural Households Without Access to Private Improved Water Sources in Benin: A Seemingly Unrelated Tobit Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1381-1398, May.
    8. Costantini, Valeria & Mazzanti, Massimiliano & Montini, Anna, 2013. "Environmental performance, innovation and spillovers. Evidence from a regional NAMEA," Ecological Economics, Elsevier, vol. 89(C), pages 101-114.
    9. Nazari, Bijan & Liaghat, Abdolmajid & Akbari, Mohammad Reza & Keshavarz, Marzieh, 2018. "Irrigation water management in Iran: Implications for water use efficiency improvement," Agricultural Water Management, Elsevier, vol. 208(C), pages 7-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir Homayoun Sarfaraz & Amir Karbassi Yazdi & Thomas Hanne & Peter Fernandes Wanke & Raheleh Sadat Hosseini, 2023. "Assessing repair and maintenance efficiency for water suppliers: a novel hybrid USBM-FIS framework," Operations Management Research, Springer, vol. 16(3), pages 1321-1342, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    4. Havranek, Tomas & Irsova, Zuzana, 2011. "Estimating vertical spillovers from FDI: Why results vary and what the true effect is," Journal of International Economics, Elsevier, vol. 85(2), pages 234-244.
    5. Orsatti, Gianluca & Pezzoni, Michele & Quatraro, Francesco, 2017. "Where Do Green Technologies Come From? Inventor Teams’ Recombinant Capabilities and the Creation of New Knowledge," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201711, University of Turin.
    6. Curzi, Daniele & Raimondi, Valentina & Olper, Alessandro, 2013. "Quality Upgrading, Competition and Trade Policy: Evidence from the Agri-Food Sector," 2013: Productivity and Its Impacts on Global Trade, June 2-4, 2013. Seville, Spain 152386, International Agricultural Trade Research Consortium.
    7. Julian Donaubauer & Peter Kannen & Frauke Steglich, 2022. "Foreign Direct Investment & Petty Corruption in Sub-Saharan Africa: An Empirical Analysis at the Local Level," Journal of Development Studies, Taylor & Francis Journals, vol. 58(1), pages 76-95, January.
    8. Junlong Li & Chuangneng Cai & Feng Zhang, 2020. "Assessment of Ecological Efficiency and Environmental Sustainability of the Minjiang-Source in China," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    9. Görg Holger & Marchal Léa, 2019. "Die Effekte deutscher Direktinvestitionen im Empfängerland vor dem Hintergrund des Leistungsbilanzüberschusses: Empirische Evidenz mit Mikrodaten für Frankreich," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 20(1), pages 53-69, June.
    10. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    12. Nikolaos Gourgouletis & Marianna Gkavrou & Evangelos Baltas, 2023. "Comparison of Empirical ETo Relationships with ERA5-Land and In Situ Data in Greece," Geographies, MDPI, vol. 3(3), pages 1-23, August.
    13. Danai Christopoulou & Nikolaos Papageorgiadis & Chengang Wang & Georgios Magkonis, 2021. "IPR Law Protection and Enforcement and the Effect on Horizontal Productivity Spillovers from Inward FDI to Domestic Firms: A Meta-analysis," Management International Review, Springer, vol. 61(2), pages 235-266, April.
    14. Sun, J. & Li, Y.P. & Suo, C. & Liu, Y.R., 2019. "Impacts of irrigation efficiency on agricultural water-land nexus system management under multiple uncertainties—A case study in Amu Darya River basin, Central Asia," Agricultural Water Management, Elsevier, vol. 216(C), pages 76-88.
    15. Yihang Zhao & Chen Liang & Xinlong Zhang, 2021. "Positive or negative externalities? Exploring the spatial spillover and industrial agglomeration threshold effects of environmental regulation on haze pollution in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11335-11356, August.
    16. Czesława Pilarska, 2018. "Efekty zewnętrzne bezpośrednich inwestycji zagranicznych z perspektywy kraju goszczącego," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 4, pages 93-124.
    17. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    18. Reza Esmaeili & Rahim Mohammadian & Hossein Heidari Sharif Abad & Ghorban Noor Mohammadi, 2022. "Improving quantity and quality of sugar beet yield using agronomic methods in summer cultivation," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(8), pages 347-357.
    19. Bao-Li Miao & Ying Liu & Yu-Bing Fan & Xue-Jiao Niu & Xiu-Yun Jiang & Zeng Tang, 2023. "Optimization of Agricultural Resource Allocation among Crops: A Portfolio Model Analysis," Land, MDPI, vol. 12(10), pages 1-18, October.
    20. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3396-:d:241440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.